Implementation of an IOT Sensor Network and Machine Learning to Measure the Water Quality DOI Creative Commons
Josefa Madrid,

Owen Josue Paz Quintanilla,

Martín G. Martínez‐Rangel

и другие.

Deleted Journal, Год журнала: 2025, Номер 14, С. 85 - 98

Опубликована: Апрель 4, 2025

Lagoons have a great importance for society, and activities such as fishing or tourism are essential these areas, this reason it is important to monitoring system in terms of water quality. The central axis project was the design implementation sensor network based on Internet Things, collecting data using an ESP32 Thingspeak platform visualization storage. Data analyzed MATLAB, allowing obtain estimation quality index Laguna Jucutuma indicating average rating 40, well Machine Learning techniques models with error margin below 3%.

Язык: Английский

Enabling Sustainable Urban Transportation with Predictive Analytics and IoT DOI Creative Commons

Oleg Igorevich Rozhdestvenskiy,

E. Poornima

MATEC Web of Conferences, Год журнала: 2024, Номер 392, С. 01179 - 01179

Опубликована: Янв. 1, 2024

This research explores the integration of predictive analytics and Internet Things (IoT) to transform sustainable urban transportation systems. project intends examine transformational effect on mobility, using empirical data gathered from IoT devices. The includes information vehicle speed, traffic density, air quality index (AQI), meteorological conditions. study use modeling estimate congestion, volume. allows for evaluation prediction accuracy its correspondence with actual data. reveals a direct relationship between increased density decreased while unfavorable weather conditions correspond congestion. Predictive models demonstrate significant in forecasting congestion quality, accurate volume poses inherent complications. comparison expected real results demonstrates dependability AQI, thereby confirming their effectiveness. interventions led by 25% decrease levels, as well notable 12.7% enhancement despite little 1.4% rise impact highlights efficacy these solutions, showcasing favorable mitigating promoting environmental sustainability. Ultimately, this emphasizes that may have improving transportation, enabling more intelligent decision-making, creating environments driven data-driven insights proactive actions.

Язык: Английский

Процитировано

3

Performance and Accuracy Enhancement of Machine Learning & IoT-based Agriculture Precision AI System DOI
Ankur Gupta, Rohit Anand, Nidhi Sindhwani

и другие.

SN Computer Science, Год журнала: 2024, Номер 5(7)

Опубликована: Окт. 3, 2024

Язык: Английский

Процитировано

3

Recent Progress on Surface Water Quality Models Utilizing Machine Learning Techniques DOI Open Access
Mengjie He, Qin Qian, Xinyu Liu

и другие.

Water, Год журнала: 2024, Номер 16(24), С. 3616 - 3616

Опубликована: Дек. 15, 2024

Surface waterbodies are heavily exposed to pollutants caused by natural disasters and human activities. Empowering sensor technologies in water quality monitoring, sufficient measurements have become available develop machine learning (ML) models. Numerous ML models quickly been adopted predict indicators various surface waterbodies. This paper reviews 78 recent articles from 2022 October 2024, categorizing utilizing into three groups: Point-to-Point (P2P), which estimates the current target value based on other at same time point; Sequence-to-Point (S2P), utilizes previous series data one point ahead; Sequence-to-Sequence (S2S), uses forecast sequential values future. The used each group classified compared according indicators, availability, model performance. Widely strategies for improving performance, including feature engineering, hyperparameter tuning, transfer learning, recognized described enhance effectiveness. interpretability limitations of applications discussed. review provides a perspective emerging

Язык: Английский

Процитировано

3

Developing a Semi-Automated Technique of Surface Water Quality Analysis Using GEE And Machine Learning: A Case Study for Sundarbans DOI Creative Commons
Sheikh Fahim Faysal Sowrav,

Sujit Kumar Debsarma,

Mohan Kumar Das

и другие.

Heliyon, Год журнала: 2025, Номер 11(3), С. e42404 - e42404

Опубликована: Фев. 1, 2025

This study presents a semi-automated approach for assessing water quality in the Sundarbans, critical and vulnerable ecosystem, using machine learning (ML) models integrated with field remotely-sensed data. Key parameters-Sea Surface Temperature (SST), Total Suspended Solids (TSS), Turbidity, Salinity, pH-were predicted through ML algorithms interpolated Empirical Bayesian Kriging (EBK) model ArcGIS Pro. The predictive framework leverages Google Earth Engine (GEE) AutoML, utilizing deep libraries to create dynamic, adaptive that enhance prediction accuracy. Comparative analyses showed ML-based effectively captured spatial temporal variations, aligning closely measurements. integration provides more efficient alternative traditional methods, which are resource-intensive less practical large-scale, remote areas. Our findings demonstrate this technique is valuable tool continuous monitoring, particularly ecologically sensitive areas limited accessibility. also offers significant applications climate resilience policy-making, as it enables timely identification of deteriorating trends may impact biodiversity ecosystem health. However, acknowledges limitations, including variability data availability inherent uncertainties predictions dynamic systems. Overall, research contributes advancement monitoring techniques, supporting sustainable environmental management practices Sundarbans against emerging challenges.

Язык: Английский

Процитировано

0

Data-driven water quality prediction using hybrid machine learning approaches for sustainable development goal 6 DOI
Jana Shafi,

Ramsha Ijaz,

Apeksha Koul

и другие.

Environment Development and Sustainability, Год журнала: 2025, Номер unknown

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

0

Future directions in water quality management: integrating advanced technologies and sustainable practices DOI
Rwitabrata Mallick, Sandeep Poddar

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 215 - 227

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Revolutionizing water quality management the impact of machine learning and artificial intelligence DOI
Richa Sharma, Aparna Satapathy,

Vaishnavi Srivastava

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 27 - 42

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Advancements in water quality monitoring: leveraging machine learning and artificial intelligence for environmental management DOI
Gagandeep Kaur, Pardeep Singh Tiwana,

Advait Vihan Kommula

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 11 - 26

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Water sustainability: a review of advances in water quality management technologies DOI
Shama E. Haque,

Farhan Sadik Snigdho,

N. Tasneem

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 195 - 214

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Artificial intelligence and machine learning based water quality monitoring, prediction, and analysis: a comprehensive review DOI
Amandeep Kaur, Sonali Goyal, Neera Batra

и другие.

Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 1 - 10

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0