Bulletin of Engineering Geology and the Environment, Год журнала: 2025, Номер 84(6)
Опубликована: Май 24, 2025
Язык: Английский
Bulletin of Engineering Geology and the Environment, Год журнала: 2025, Номер 84(6)
Опубликована: Май 24, 2025
Язык: Английский
Land, Год журнала: 2025, Номер 14(3), С. 577 - 577
Опубликована: Март 10, 2025
Geological hazards in Southern Sichuan have become increasingly frequent, posing severe risks to local communities and infrastructure. This study aims predict the spatial distribution of potential geological using machine learning models ArcGIS-based analysis. A dataset comprising 2700 known hazard locations Yibin City was analyzed extract key environmental topographic features influencing susceptibility. Several were evaluated, including random forest, XGBoost, CatBoost, with model optimization performed Sparrow Search Algorithm (SSA) enhance prediction accuracy. produced high-resolution susceptibility maps identifying high-risk zones, revealing a distinct pattern characterized by concentration mountainous areas such as Pingshan County, Junlian Gong while plains exhibited relatively lower risk. Among different types, landslides found be most prevalent. The results further indicate strong overlap between predicted zones existing rural settlements, highlighting challenges resilience these areas. research provides refined methodological framework for integrating geospatial analysis prediction. findings offer valuable insights land use planning mitigation strategies, emphasizing necessity adopting “small aggregations multi-point placement” approach settlement Sichuan’s regions.
Язык: Английский
Процитировано
1Research Square (Research Square), Год журнала: 2025, Номер unknown
Опубликована: Март 10, 2025
Язык: Английский
Процитировано
0Geological Journal, Год журнала: 2025, Номер unknown
Опубликована: Март 23, 2025
ABSTRACT To investigate the evaluation performance of different models across various units, 174 landslide samples were selected from Xide County, Sichuan Province, China, as study area, considering 12 conditioning factors such aspect, slope and elevation. Using software tools ArcGIS SPSS, susceptibility in area was assessed units (12.5 30 m grid units). Four employed for this evaluation: information value model (IV), logistic regression (LR), value–logistic coupled (IV‐LR) decision tree (DT). The accuracy analysed using rationality testing ROC curves. results indicate that, within same model, assessment 12.5 unit surpasses that other two with an average AUC 0.849. Under unit, IV‐LR consistently demonstrated strong all achieving highest 0.881 unit.
Язык: Английский
Процитировано
0Journal of South American Earth Sciences, Год журнала: 2025, Номер unknown, С. 105509 - 105509
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Contributions to finance and accounting, Год журнала: 2025, Номер unknown, С. 119 - 134
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Geocarto International, Год журнала: 2025, Номер 40(1)
Опубликована: Апрель 25, 2025
Язык: Английский
Процитировано
0Bulletin of Engineering Geology and the Environment, Год журнала: 2025, Номер 84(6)
Опубликована: Май 24, 2025
Язык: Английский
Процитировано
0