A Combination of Chaotic Harris Hawks Optimizer‐Stacking Model and Kernel Density Estimation Method for Pressing Force Prediction During Slab Sizing Press Process DOI

Wenteng Wu,

Wen Peng, Wenbo Wang

и другие.

steel research international, Год журнала: 2023, Номер 94(12)

Опубликована: Июнь 24, 2023

During the slab sizing press (SP) process, pressing force corresponds to profile, which guides production schedule design and final profile control. To accomplish prediction of for SP, an improved ensemble method based on chaotic Harris hawks optimizer (CHHO) stacking is proposed. A mechanistic knowledge introduced feature selection that enhances rationality input features. Subsequently, 11 machine learning models are compared 5 them selected as candidate learners method. Based candidates learners, 8 strategies constructed, stacked model with extratree regressor, gradient boosted decision trees, kernel ridge regression (KRR) base‐learners KRR meta‐learner performs best. The R 2 , MAE, mean square error, squared log absolute percentage error test dataset 0.9912, 0.0856, 0.0167, 0.0005, 2.00%, respectively, 95% errors less than 0.15 MN. Then, sensitivity analysis predictive Shapley Additive Explanations performed demonstrate good alignment proposed physical reality. Furthermore, cope complexity uncertainty CHHO‐stacking density estimation integrated interval.

Язык: Английский

Performance evaluation of machine learning techniques in surface roughness prediction for 3D printed micro-lattice structures DOI

B. Veera Siva Reddy,

Ameer Malik Shaik,

C. Chandrasekhara Sastry

и другие.

Journal of Manufacturing Processes, Год журнала: 2025, Номер 137, С. 320 - 341

Опубликована: Фев. 7, 2025

Язык: Английский

Процитировано

3

Data‐driven and artificial intelligence accelerated steel material research and intelligent manufacturing technology DOI Creative Commons

Xiaoxiao Geng,

Feiyang Wang,

Hong‐Hui Wu

и другие.

Materials Genome Engineering Advances, Год журнала: 2023, Номер 1(1)

Опубликована: Сен. 1, 2023

Abstract With the development of new information technology, big data technology and artificial intelligence (AI) have accelerated material research industrial manufacturing, which become key driving a wave global technological revolution transformation. This review introduces resources databases related to steel materials. It then examines fundamental strategies applications machine learning (ML) in design discovery materials, including ML models based on experimental data, manufacturing simulation respectively. Given advancements AI/ML, communication technologies, an intelligent mode featuring digital twins is deemed critical guiding next revolution. Consequently, application with iron industry reviewed discussed. Furthermore, service performance prediction products are addressed. Finally, future trends for data‐driven AI approaches throughout entire life cycle materials prospected. Overall, this work presents in‐depth examination integration technologies industry, highlighting their potential directions.

Язык: Английский

Процитировано

29

Prediction of roll wear and thermal expansion based on informer network in hot rolling process and application in the control of crown and thickness DOI

LingMing Meng,

Jingguo Ding,

Zishuo Dong

и другие.

Journal of Manufacturing Processes, Год журнала: 2023, Номер 103, С. 248 - 260

Опубликована: Сен. 1, 2023

Язык: Английский

Процитировано

21

Variable speed rolling force prediction with theoretical and data-driven models DOI
Lei Cao, Li Xu, Xiaohua Li

и другие.

International Journal of Mechanical Sciences, Год журнала: 2023, Номер 264, С. 108833 - 108833

Опубликована: Окт. 21, 2023

Язык: Английский

Процитировано

19

Predicting mechanical properties lower upper bound for cold-rolling strip by machine learning-based artificial intelligence DOI
Jingdong Li, Xiaochen Wang, Jianwei Zhao

и другие.

ISA Transactions, Год журнала: 2024, Номер 147, С. 328 - 336

Опубликована: Янв. 24, 2024

Язык: Английский

Процитировано

9

An imbalanced small sample slab defect recognition method based on image generation DOI
Tianjie Fu, Peiyu Li, Shimin Liu

и другие.

Journal of Manufacturing Processes, Год журнала: 2024, Номер 118, С. 376 - 388

Опубликована: Март 23, 2024

Язык: Английский

Процитировано

9

Point and interval prediction of the effective length of hot-rolled plates based on IBES-XGBoost DOI

Zishuo Dong,

Xu Li,

Feng Luan

и другие.

Measurement, Год журнала: 2023, Номер 214, С. 112857 - 112857

Опубликована: Апрель 6, 2023

Язык: Английский

Процитировано

14

Fusion of theory and data-driven model in hot plate rolling: A case study of rolling force prediction DOI

Zishuo Dong,

Xu Li,

Feng Luan

и другие.

Expert Systems with Applications, Год журнала: 2023, Номер 245, С. 123047 - 123047

Опубликована: Дек. 28, 2023

Язык: Английский

Процитировано

14

Determination and prediction of surface and kerf properties in abrasive water jet machining of Fe-Cr-C based hardfacing wear plates DOI
Mustafa Armağan,

Aziz Armağan Arıcı

Journal of Manufacturing Processes, Год журнала: 2024, Номер 117, С. 329 - 345

Опубликована: Март 15, 2024

Язык: Английский

Процитировано

6

Hot rolled prognostic approach based on hybrid Bayesian progressive layered extraction multi-task learning DOI
Shuxin Zhang, Zhitao Liu, Tao An

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 249, С. 123763 - 123763

Опубликована: Март 21, 2024

Язык: Английский

Процитировано

4