Fracture failure analysis of heavy-haul train couplers using convolutional neural network along with multilayer perceptron DOI
Qiang Feng, Jiyou Fei,

Junhua Bao

и другие.

Measurement Science and Technology, Год журнала: 2024, Номер 35(11), С. 116115 - 116115

Опубликована: Авг. 12, 2024

Abstract Metal couplers are susceptible to unpredictable failure and fracture under long-term high-load conditions in heavy-haul railway transportation. The current mainstream manual inspection method has the disadvantages of high subjectivity a priori knowledge requirements, thus not meeting rapid analysis requirements production companies. Therefore, this study, an automated is proposed for coupler fractures. First, novel image segmentation (PermuteNet) combining visual multilayer perceptron convolutional neural network designed segment different patterns surfaces. uses two newly modules—permute attention module context module—to improve network’s ability perceive weakly differentiated objects, thereby improving recognition model patterns. In addition, deep supervisory function adopted accelerate convergence speed network. Finally, deployed on computer conjunction with developed client application implement single-click detection pattern analysis. Experiments performed using dataset established on-site data; achieves mean intersection over union 77.8%, which considerably higher than that other existing methods. By software, area realized. Thus, provides more convenient accurate identification solution factory inspectors broad prospects.

Язык: Английский

Surface hardness prediction for laser shock peening using narrow-band MCP-PMT and deep feature fusion with key elements and key frames DOI

Zhengyao Du,

Zhifen Zhang, Rui Qin

и другие.

Journal of Manufacturing Processes, Год журнала: 2025, Номер 136, С. 228 - 245

Опубликована: Янв. 29, 2025

Язык: Английский

Процитировано

0

An efficient re-parameterization feature pyramid network on YOLOv8 to the detection of steel surface defect DOI
Weining Xie, Weifeng Ma, Xiaoyong Sun

и другие.

Neurocomputing, Год журнала: 2024, Номер 614, С. 128775 - 128775

Опубликована: Ноя. 4, 2024

Язык: Английский

Процитировано

3

MSIDetector: Detecting Multi-Scenario industrial defects using an adapted visual foundation model and dual thresholding discriminator DOI
Xujie He, Jing Jin,

Fujiang Yu

и другие.

Measurement, Год журнала: 2024, Номер unknown, С. 115753 - 115753

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

0

HDFA-Net: A high-dimensional decoupled frequency attention network for steel surface defect detection DOI
Fangfang Liang,

Zhaoyang Wang,

Wei Ma

и другие.

Measurement, Год журнала: 2024, Номер unknown, С. 116255 - 116255

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

0

Fracture failure analysis of heavy-haul train couplers using convolutional neural network along with multilayer perceptron DOI
Qiang Feng, Jiyou Fei,

Junhua Bao

и другие.

Measurement Science and Technology, Год журнала: 2024, Номер 35(11), С. 116115 - 116115

Опубликована: Авг. 12, 2024

Abstract Metal couplers are susceptible to unpredictable failure and fracture under long-term high-load conditions in heavy-haul railway transportation. The current mainstream manual inspection method has the disadvantages of high subjectivity a priori knowledge requirements, thus not meeting rapid analysis requirements production companies. Therefore, this study, an automated is proposed for coupler fractures. First, novel image segmentation (PermuteNet) combining visual multilayer perceptron convolutional neural network designed segment different patterns surfaces. uses two newly modules—permute attention module context module—to improve network’s ability perceive weakly differentiated objects, thereby improving recognition model patterns. In addition, deep supervisory function adopted accelerate convergence speed network. Finally, deployed on computer conjunction with developed client application implement single-click detection pattern analysis. Experiments performed using dataset established on-site data; achieves mean intersection over union 77.8%, which considerably higher than that other existing methods. By software, area realized. Thus, provides more convenient accurate identification solution factory inspectors broad prospects.

Язык: Английский

Процитировано

0