Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Applied Energy, Год журнала: 2024, Номер 358, С. 122671 - 122671
Опубликована: Янв. 21, 2024
Язык: Английский
Процитировано
21Measurement, Год журнала: 2025, Номер unknown, С. 117390 - 117390
Опубликована: Март 1, 2025
Процитировано
2Journal of Sound and Vibration, Год журнала: 2025, Номер unknown, С. 118980 - 118980
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Flow Measurement and Instrumentation, Год журнала: 2025, Номер unknown, С. 102816 - 102816
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
1Measurement Science and Technology, Год журнала: 2024, Номер 35(11), С. 116105 - 116105
Опубликована: Июль 22, 2024
Abstract Natural gas pipelines are an essential part of the economy. may leak after aging, strong vibration signals be generated in pipeline when leakage occurs, and noisy. Traditional variational mode decomposition (VMD) noise reduction methods need to set parameters advance, so not achieve best effect. To solve this problem, paper proposes a method for location based on sparrow search algorithm (SSA) optimization VMD combined with generalized quadratic cross-correlation. The first calculates original signal-to-noise ratio (SNR), if SNR is low, wavelet threshold denoising used process signal. Then, SSA refine two key (penalty parameter α number K ) sample entropy. Subsequently, signal undergoes into intrinsic function (IMF) components through according obtained analysis combination. IMF screened obtain reconstructed Finally, obtained. delay cross-correlation accurate position using delay. Experiments showed that minimum relative error could reach 0.6%, which was more than traditional method, effectively improved accuracy noisy locations.
Язык: Английский
Процитировано
4NDT & E International, Год журнала: 2024, Номер 148, С. 103232 - 103232
Опубликована: Сен. 3, 2024
Язык: Английский
Процитировано
4Engineering Applications of Computational Fluid Mechanics, Год журнала: 2024, Номер 18(1)
Опубликована: Сен. 26, 2024
Язык: Английский
Процитировано
3Journal of Manufacturing Processes, Год журнала: 2024, Номер 132, С. 224 - 237
Опубликована: Ноя. 4, 2024
Язык: Английский
Процитировано
3Journal of Manufacturing Processes, Год журнала: 2025, Номер 135, С. 142 - 160
Опубликована: Янв. 18, 2025
Язык: Английский
Процитировано
0Nonlinear Engineering, Год журнала: 2025, Номер 14(1)
Опубликована: Янв. 1, 2025
Abstract In robotic welding systems, weldment recognition and pose estimation play crucial roles in achieving precision efficiency. Weldment involves identifying classifying different types of weld joints components with high accuracy, often employing computer vision techniques machine learning algorithms trained on diverse datasets. Concurrently, determines the precise position orientation torch relative to weldment, which is for ensuring proper alignment execution tasks. Hence, this study proposed a multi-point entropy (MPEE) model estimation. The MPEE computes design data-driven points. estimates features. With estimated points Weldmart, are tracked fault detection. Through approach, employed robotics. specifically addresses challenge focuses estimating multiple within design. By leveraging integrates models, enhances accuracy reliability point results stated that dataset comprising joint variations, system achieves over 95% real-time applications. geometric hashing iterative closest enables an average error margin less than 1 mm.
Язык: Английский
Процитировано
0