A human-inspired slow-fast dual-branch method for product quality prediction of complex manufacturing processes with hierarchical variations DOI
Tianyu Wang, Zongyang Hu, Yijie Wang

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 64, С. 102967 - 102967

Опубликована: Дек. 4, 2024

Язык: Английский

Assembly Time Standard Setting Based on Kernel Estimators DOI Creative Commons

Izabela Kutschenreiter-Praszkiewicz

Journal of Machine Engineering, Год журнала: 2025, Номер unknown

Опубликована: Март 22, 2025

Time standards belong to vital indicators of the production process that facilitate making decisions related product and improvement. The presented issues concern determination assembly time standard using kernel estimators. development neural networks offers possibility identify begin-end points in can provide big data standard. problem addressed this paper is a method analysis, on basis which be determined. In approach adequate formulas are developed together with some examples. presents an application theory estimators as well results proposed approach.

Язык: Английский

Процитировано

0

Geometrical preservation and correlation learning for multi-source unsupervised domain adaptation DOI

Huiling Fu,

Yuwu Lu

Pattern Recognition Letters, Год журнала: 2025, Номер unknown

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Adaptive multilevel regression integration with error compensation for online soft sensing of data streams DOI
Guomin Wu, Lei Chen, Hengqian Wang

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 130397 - 130397

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

A human-inspired slow-fast dual-branch method for product quality prediction of complex manufacturing processes with hierarchical variations DOI
Tianyu Wang, Zongyang Hu, Yijie Wang

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 64, С. 102967 - 102967

Опубликована: Дек. 4, 2024

Язык: Английский

Процитировано

0