Remaining Useful Life Prediction Method Based on Dual-Path Interaction Network with Multiscale Feature Fusion and Dynamic Weight Adaptation DOI Creative Commons
Zhe Lu, Bing Li,

C. D. Fu

и другие.

Actuators, Год журнала: 2024, Номер 13(10), С. 413 - 413

Опубликована: Окт. 13, 2024

In fields such as manufacturing and aerospace, remaining useful life (RUL) prediction estimates the failure time of high-value assets like industrial equipment aircraft engines by analyzing series data collected from various sensors, enabling more effective predictive maintenance. However, significant temporal diversity operational complexity during operation make it difficult for traditional single-scale, single-dimensional feature extraction methods to effectively capture complex dependencies multi-dimensional interactions. To address this issue, we propose a Dual-Path Interaction Network, integrating Multiscale Temporal-Feature Convolution Fusion Module (MTF-CFM) Dynamic Weight Adaptation (DWAM). This approach adaptively extracts information across different scales, interaction information. Using Commercial Modular Aero-Propulsion System Simulation (C-MAPSS) dataset comprehensive performance evaluation, our method achieved RMSE values 0.0969, 0.1316, 0.086, 0.1148; MAPE 9.72%, 14.51%, 8.04%, 11.27%; Score results 59.93, 209.39, 67.56, 215.35 four categories. Furthermore, MTF-CFM module demonstrated an average improvement 7.12%, 10.62%, 7.21% in RMSE, MAPE, multiple baseline models. These validate effectiveness potential proposed model improving accuracy robustness RUL prediction.

Язык: Английский

A customized dual-transformer framework for remaining useful life prediction of mechanical systems with degraded state DOI
Zhan Gao, Weixiong Jiang, Jun Wu

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 230, С. 112611 - 112611

Опубликована: Март 26, 2025

Язык: Английский

Процитировано

3

Deep learning-stochastic ensemble for RUL prediction and predictive maintenance with dynamic mission abort policies DOI

A. Faizanbasha,

U. Rizwan

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 110919 - 110919

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

2

Domain generalization for rotating machinery real-time remaining useful life prediction via multi-domain orthogonal degradation feature exploration DOI
Jie Shang,

Danyang Xu,

Haobo Qiu

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2024, Номер 223, С. 111924 - 111924

Опубликована: Сен. 16, 2024

Язык: Английский

Процитировано

7

Multi-task dual-level adversarial transfer learning boosted RUL estimation of CNC milling tools DOI
Pei Wang, Jinrui Liu,

Jingshuai Qi

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113152 - 113152

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Multi-view fully connected graph to fuse multi-sensor signals for mechanical equipment remaining useful life prediction DOI
Jinxin Wu, Deqiang He, Zhenzhen Jin

и другие.

Journal of Manufacturing Systems, Год журнала: 2025, Номер 80, С. 1029 - 1052

Опубликована: Май 13, 2025

Язык: Английский

Процитировано

1

Spatio-temporal degradation model with graph neural network and structured state space model for remaining useful life prediction DOI
Xia Wu,

Zhiwen Liu,

Lei Wang

и другие.

Reliability Engineering & System Safety, Год журнала: 2024, Номер unknown, С. 110770 - 110770

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

4

A method combining dynamic path matching with multipath adaptive drift Lévy stable motion for performance degradation prediction DOI
Shuai Lv, Shujie Liu, Hongkun Li

и другие.

Structural Health Monitoring, Год журнала: 2025, Номер unknown

Опубликована: Март 13, 2025

Characterizing equipment performance degradation and predicting remaining useful life (RUL) are critical aspects of predictive maintenance in mechanical systems. The foundation effective RUL prediction lies constructing health indicator (HI) based on condition monitoring signals that accurately reflect status. In addition, the individual variability uncertainty process often make it challenging for a single path to represent entire fully. To address these issues, this article introduces novel framework characterization prediction. Initially, we constructed HI using Wasserstein distance Cumulative sum (CUMSUM) control chart. This approach not only captures changes signal probability distribution during but also exhibits strong monotonicity, trendability, robustness. Next, propose dynamic first time (FPT) identification method Chebyshev’s inequality, which effectively mitigates influence outliers minor fluctuations. Additionally, develop matching multipath adaptive drift linear multifractional Lévy stable motion (DPM-MPALMLSM) model MPALMLSM incorporates multiple paths capture non-Gaussian characteristics, long-range dependence features, multifractal properties process, with coefficients dynamically updated as data evolves. method, grounded evaluation, facilitates efficient switching between paths, enhancing accuracy. effectiveness precision proposed demonstrated full-life testing from heavy truck transmissions, XJTU-SY IMS benchmark bearing datasets.

Язык: Английский

Процитировано

0

A nonlinear dynamic ensemble remaining useful life prediction method considering multi-source data uncertainty DOI
Pengwei Jiang, Weibo Ren, Zhongxin Chen

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 230, С. 112607 - 112607

Опубликована: Март 20, 2025

Язык: Английский

Процитировано

0

VSC-Net: Versatile spatiotemporal convolution network with multi-sensor signals for remaining useful life prediction of mechanical systems DOI
Zhan Gao,

Yumeng Lei,

Jun Wu

и другие.

Information Fusion, Год журнала: 2025, Номер unknown, С. 103288 - 103288

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

ReScConv-xLSTM: An improved xLSTM model with spatiotemporal feature extraction capability for remaining useful life prediction of Aero-engine DOI Creative Commons
Mengyuan Huang,

Lanying Yang,

Gang Jiang

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 105513 - 105513

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0