Reliability Engineering & System Safety, Год журнала: 2022, Номер 231, С. 108990 - 108990
Опубликована: Ноя. 22, 2022
Язык: Английский
Reliability Engineering & System Safety, Год журнала: 2022, Номер 231, С. 108990 - 108990
Опубликована: Ноя. 22, 2022
Язык: Английский
Engineering Failure Analysis, Год журнала: 2023, Номер 146, С. 107060 - 107060
Опубликована: Янв. 14, 2023
Язык: Английский
Процитировано
66Engineering Failure Analysis, Год журнала: 2023, Номер 146, С. 107097 - 107097
Опубликована: Фев. 2, 2023
Язык: Английский
Процитировано
66Engineering Failure Analysis, Год журнала: 2023, Номер 155, С. 107735 - 107735
Опубликована: Окт. 18, 2023
Язык: Английский
Процитировано
45International Journal of Hydrogen Energy, Год журнала: 2024, Номер 58, С. 1214 - 1239
Опубликована: Фев. 1, 2024
Язык: Английский
Процитировано
39International Journal of Hydrogen Energy, Год журнала: 2024, Номер 72, С. 74 - 109
Опубликована: Май 28, 2024
Язык: Английский
Процитировано
33International Journal of Hydrogen Energy, Год журнала: 2024, Номер 60, С. 867 - 889
Опубликована: Фев. 23, 2024
Язык: Английский
Процитировано
32Machines, Год журнала: 2024, Номер 12(1), С. 42 - 42
Опубликована: Янв. 8, 2024
Pipeline integrity and safety depend on the detection prediction of stress corrosion cracking (SCC) other defects. In oil gas pipeline systems, a variety corrosion-monitoring techniques are used. The observed data exhibit characteristics nonlinearity, multidimensionality, noise. Hence, data-driven modeling have been widely utilized. To accomplish intelligent enhance control, machine learning (ML)-based approaches developed. Some published papers related to SCC discussed ML their applications, but none works has shown real ability detect or predict in energy pipelines, though fewer researchers tested models prove them under controlled environments laboratories, which is completely different from work field. Looking at current research status, authors believe that there need explore best technologies identify clear gaps; critical review is, therefore, required. objective this study assess status learning’s applications detection, gaps, indicate future directions scientific application point view. This will highlight limitations challenges employing for also discuss importance incorporating domain knowledge expert inputs accuracy reliability predictions. Finally, framework proposed demonstrate process condition assessments pipelines.
Язык: Английский
Процитировано
20Engineering Failure Analysis, Год журнала: 2022, Номер 144, С. 106951 - 106951
Опубликована: Ноя. 24, 2022
Язык: Английский
Процитировано
52Journal of Materials Chemistry A, Год журнала: 2022, Номер 10(36), С. 18616 - 18625
Опубликована: Янв. 1, 2022
This work demonstrates a cost-effective and large-scale strategy for preparing superhydrophobic F-SiO 2 /epoxy resin coating based self-powered synergistic anti-corrosion system effectively protecting metals from corrosion.
Язык: Английский
Процитировано
48Scientific Reports, Год журнала: 2023, Номер 13(1)
Опубликована: Фев. 22, 2023
This article presents the results of a numerical experiment and an analysis temperature fields (coolers for gas) using cooling elements in case study gas pipeline. An demonstrated several principles formation field, which indicates need to maintain relative pumping. The essence was install unlimited number on purpose this determine at what distance it is possible optimal pumping regime, regarding synthesis control law determination location assessment error depending elements. developed technique allows evaluation system's regulation error.
Язык: Английский
Процитировано
37