Expert Systems with Applications, Год журнала: 2021, Номер 176, С. 114901 - 114901
Опубликована: Март 14, 2021
Язык: Английский
Expert Systems with Applications, Год журнала: 2021, Номер 176, С. 114901 - 114901
Опубликована: Март 14, 2021
Язык: Английский
Expert Systems with Applications, Год журнала: 2022, Номер 215, С. 119269 - 119269
Опубликована: Ноя. 17, 2022
Язык: Английский
Процитировано
123Knowledge-Based Systems, Год журнала: 2021, Номер 233, С. 107543 - 107543
Опубликована: Сен. 30, 2021
Язык: Английский
Процитировано
119Engineering With Computers, Год журнала: 2022, Номер 39(3), С. 1935 - 1979
Опубликована: Янв. 27, 2022
Язык: Английский
Процитировано
104Journal of Bionic Engineering, Год журнала: 2022, Номер 19(4), С. 1161 - 1176
Опубликована: Фев. 16, 2022
Язык: Английский
Процитировано
76Computers in Biology and Medicine, Год журнала: 2022, Номер 142, С. 105181 - 105181
Опубликована: Янв. 3, 2022
Язык: Английский
Процитировано
73IEEE/CAA Journal of Automatica Sinica, Год журнала: 2024, Номер 11(2), С. 301 - 328
Опубликована: Янв. 29, 2024
This paper provides a comprehensive review of the current status, advancements, and future prospects humanoid robots, highlighting their significance in driving evolution next-generation industries. By analyzing various research endeavors key technologies, encompassing ontology structure, control decision-making, perception interaction, holistic overview state robot is presented. Furthermore, emerging challenges field are identified, emphasizing necessity for deeper understanding biological motion mechanisms, improved structural design, enhanced material applications, advanced drive methods, efficient energy utilization. The integration bionics, brain-inspired intelligence, mechanics, underscored as promising direction development robotic systems. serves an invaluable resource, offering insightful guidance to researchers field, while contributing ongoing potential robots across diverse domains.
Язык: Английский
Процитировано
47Neurocomputing, Год журнала: 2024, Номер 607, С. 128427 - 128427
Опубликована: Авг. 22, 2024
Язык: Английский
Процитировано
43Neurocomputing, Год журнала: 2024, Номер 607, С. 128289 - 128289
Опубликована: Авг. 3, 2024
Язык: Английский
Процитировано
30IEEE Access, Год журнала: 2020, Номер 8, С. 76841 - 76855
Опубликована: Янв. 1, 2020
This study aims to propose an effective intelligent model for predicting entrepreneurial intention, which can provide a reasonable reference the formulation of talent training programs and guidance intention students. The prediction is mainly based on kernel extreme learning machine (KELM) optimized by improved Harris hawk's optimizer (HHO). In order obtain better parameters feature subsets, Gaussian barebone (GB) strategy introduced improve HHO algorithm, so as strengthen optimization ability tuning KELM identifying compact subsets. Then, optimal (GBHHO-KELM) established according obtained subsets predict experiment, GBHHO compared with other nine well-known methods in 30 CEC 2014 benchmark problems. experimental findings suggest that proposed method significantly superior existing most At same time, GBHHO-KELM intention. results indicate achieve classification performance higher stability accordance four metrics. Therefore, we conclude expected be tool
Язык: Английский
Процитировано
131Expert Systems with Applications, Год журнала: 2019, Номер 144, С. 113113 - 113113
Опубликована: Ноя. 30, 2019
Язык: Английский
Процитировано
103