IWOSSA: An improved whale optimization salp swarm algorithm for solving optimization problems DOI
Mahmoud M. Saafan, Eman M. El-Gendy

Expert Systems with Applications, Год журнала: 2021, Номер 176, С. 114901 - 114901

Опубликована: Март 14, 2021

Язык: Английский

An improved whale optimization algorithm based on multi-population evolution for global optimization and engineering design problems DOI

Ya Shen,

Chen Zhang, Farhad Soleimanian Gharehchopogh

и другие.

Expert Systems with Applications, Год журнала: 2022, Номер 215, С. 119269 - 119269

Опубликована: Ноя. 17, 2022

Язык: Английский

Процитировано

123

An enhanced whale optimization algorithm for large scale optimization problems DOI
Sanjoy Chakraborty, Apu Kumar Saha, Ratul Chakraborty

и другие.

Knowledge-Based Systems, Год журнала: 2021, Номер 233, С. 107543 - 107543

Опубликована: Сен. 30, 2021

Язык: Английский

Процитировано

119

Boosting whale optimization with evolution strategy and Gaussian random walks: an image segmentation method DOI
Abdelazim G. Hussien, Ali Asghar Heidari, Xiaojia Ye

и другие.

Engineering With Computers, Год журнала: 2022, Номер 39(3), С. 1935 - 1979

Опубликована: Янв. 27, 2022

Язык: Английский

Процитировано

104

mLBOA: A Modified Butterfly Optimization Algorithm with Lagrange Interpolation for Global Optimization DOI

Sushmita Sharma,

Sanjoy Chakraborty, Apu Kumar Saha

и другие.

Journal of Bionic Engineering, Год журнала: 2022, Номер 19(4), С. 1161 - 1176

Опубликована: Фев. 16, 2022

Язык: Английский

Процитировано

76

Horizontal and vertical search artificial bee colony for image segmentation of COVID-19 X-ray images DOI
Hang Su, Dong Zhao, Fanhua Yu

и другие.

Computers in Biology and Medicine, Год журнала: 2022, Номер 142, С. 105181 - 105181

Опубликована: Янв. 3, 2022

Язык: Английский

Процитировано

73

Advancements in Humanoid Robots: A Comprehensive Review and Future Prospects DOI
Yuchuang Tong, Haotian Liu, Zhengtao Zhang

и другие.

IEEE/CAA Journal of Automatica Sinica, Год журнала: 2024, Номер 11(2), С. 301 - 328

Опубликована: Янв. 29, 2024

This paper provides a comprehensive review of the current status, advancements, and future prospects humanoid robots, highlighting their significance in driving evolution next-generation industries. By analyzing various research endeavors key technologies, encompassing ontology structure, control decision-making, perception interaction, holistic overview state robot is presented. Furthermore, emerging challenges field are identified, emphasizing necessity for deeper understanding biological motion mechanisms, improved structural design, enhanced material applications, advanced drive methods, efficient energy utilization. The integration bionics, brain-inspired intelligence, mechanics, underscored as promising direction development robotic systems. serves an invaluable resource, offering insightful guidance to researchers field, while contributing ongoing potential robots across diverse domains.

Язык: Английский

Процитировано

47

Polar Lights Optimizer: Algorithm and Applications in Image Segmentation and Feature Selection DOI

Yuan Chong,

Dong Zhao, Ali Asghar Heidari

и другие.

Neurocomputing, Год журнала: 2024, Номер 607, С. 128427 - 128427

Опубликована: Авг. 22, 2024

Язык: Английский

Процитировано

43

FATA: An efficient optimization method based on geophysics DOI

Ailiang Qi,

Dong Zhao, Ali Asghar Heidari

и другие.

Neurocomputing, Год журнала: 2024, Номер 607, С. 128289 - 128289

Опубликована: Авг. 3, 2024

Язык: Английский

Процитировано

30

Predicting Entrepreneurial Intention of Students: An Extreme Learning Machine With Gaussian Barebone Harris Hawks Optimizer DOI Creative Commons
Wei Yan,

Huijing Lv,

Mengxiang Chen

и другие.

IEEE Access, Год журнала: 2020, Номер 8, С. 76841 - 76855

Опубликована: Янв. 1, 2020

This study aims to propose an effective intelligent model for predicting entrepreneurial intention, which can provide a reasonable reference the formulation of talent training programs and guidance intention students. The prediction is mainly based on kernel extreme learning machine (KELM) optimized by improved Harris hawk's optimizer (HHO). In order obtain better parameters feature subsets, Gaussian barebone (GB) strategy introduced improve HHO algorithm, so as strengthen optimization ability tuning KELM identifying compact subsets. Then, optimal (GBHHO-KELM) established according obtained subsets predict experiment, GBHHO compared with other nine well-known methods in 30 CEC 2014 benchmark problems. experimental findings suggest that proposed method significantly superior existing most At same time, GBHHO-KELM intention. results indicate achieve classification performance higher stability accordance four metrics. Therefore, we conclude expected be tool

Язык: Английский

Процитировано

131

Advanced orthogonal learning-driven multi-swarm sine cosine optimization: Framework and case studies DOI
Hao Chen, Ali Asghar Heidari, Xuehua Zhao

и другие.

Expert Systems with Applications, Год журнала: 2019, Номер 144, С. 113113 - 113113

Опубликована: Ноя. 30, 2019

Язык: Английский

Процитировано

103