Exploring Bioinformatics Opportunities for Identification and Study of Medicinal Plants: A Comprehensive Review DOI Open Access

gopal gupta,

Shan Khatoon,

Rajnish singh

и другие.

Опубликована: Май 13, 2024

Medicinal plants have been a cornerstone of traditional medicine systems for centuries, offering vast array bioactive compounds with therapeutic potential. However, the identification, characterization, and elucidation pharmacological properties these often challenging due to their complex chemical composition diverse biological activities. Bioinformatics, its interdisciplinary approach combining biology, computer science, information technology, presents powerful toolkit systematic study medicinal plants. This review provides an overview bioinformatics methodologies resources that can facilitate phytochemical analysis, investigation, conservation It highlights integration omics technologies, computational algorithms, database resources, molecular modeling techniques in advancing our understanding plants' potential applications drug discovery development.

Язык: Английский

Rapid and non-destructive identification of Panax ginseng origins using hyperspectral imaging, visible light imaging, and X-ray imaging combined with multi-source data fusion strategies DOI

Jiacong Ping,

Zehua Ying,

Nan Hao

и другие.

Food Research International, Год журнала: 2024, Номер 192, С. 114758 - 114758

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

15

MTJNet: Multi-task joint learning network for advancing medicinal plant and leaf classification DOI
Shubham Sharma, Manu Vardhan

Knowledge-Based Systems, Год журнала: 2024, Номер 299, С. 112147 - 112147

Опубликована: Июнь 17, 2024

Язык: Английский

Процитировано

11

Rapid determination of residual pefloxacin in mutton based on hyperspectral imaging and data fusion DOI
Hui Li, Fujia Dong,

Yu Lv

и другие.

Journal of Food Composition and Analysis, Год журнала: 2024, Номер 132, С. 106285 - 106285

Опубликована: Май 2, 2024

Язык: Английский

Процитировано

9

Application of ATR-FTIR and FT-NIR spectroscopy coupled with chemometrics for species identification and quality prediction of boletes DOI Creative Commons

Chuanmao Zheng,

Jieqing Li, Honggao Liu

и другие.

Food Chemistry X, Год журнала: 2024, Номер 23, С. 101661 - 101661

Опубликована: Июль 15, 2024

Язык: Английский

Процитировано

9

Effect of drying temperature on composition of edible mushrooms: Characterization and assessment via HS-GC-MS and IR spectral based volatile profiling and chemometrics DOI Creative Commons

Chuanmao Zheng,

Jieqing Li, Honggao Liu

и другие.

Current Research in Food Science, Год журнала: 2024, Номер 9, С. 100819 - 100819

Опубликована: Янв. 1, 2024

Edible wild mushrooms are one of the popular ingredients due to their high quality and unique flavor nutrients. To gain insight into effect drying temperature on its composition, 86 Boletus bainiugan were divided 5 groups dried at different temperatures. Headspace solid-phase microextraction-gas chromatography-mass spectrometry (HS-SPME-GC-MS) was used for identification volatile organic compounds (VOCs) bainiugan. The 21 differential VOCs that distinguish temperatures identified. 65 °C retained more VOCs. There differences in types content temperatures, proteins, polysaccharides, crude fibers, fats. Fourier transform near-infrared (FT-NIR) spectroscopy, infrared (FTIR) two-dimensional correlation spectroscopy (2DCOS) images successfully characterized chemical composition Partial least squares discriminant analysis (PLS-DA) verified variability with coefficient determination (R2) = 0.95 predictive performance (Q2) 0.75 92.31% accuracy. Next, provides a fast efficient assessment nutrients (proteins, fats).

Язык: Английский

Процитировано

6

Multi-spectra combined with Bayesian optimized machine learning algorithms for rapid and non-destructive detection of adulterated functional food Panax notoginseng powder DOI

Huanhuan Guan,

Zhi‐Tong Zhang,

Lei Bai

и другие.

Journal of Food Composition and Analysis, Год журнала: 2024, Номер 133, С. 106412 - 106412

Опубликована: Июнь 7, 2024

Язык: Английский

Процитировано

5

New vision for TCM quality control: Elemental fingerprints and key ingredient combination strategy for identification and evaluation of TCMs DOI Creative Commons
Yaolei Li, Jing Fan,

Hongyu Jin

и другие.

European Journal of Medicinal Chemistry, Год журнала: 2024, Номер 281, С. 117006 - 117006

Опубликована: Окт. 30, 2024

Язык: Английский

Процитировано

4

Differentiation of Citri Reticulatae Pericarpium varieties via HPLC fingerprinting of polysaccharides combined with machine learning DOI
Meng Zhong,

Meng-ning Li,

Wei Zou

и другие.

Food Chemistry, Год журнала: 2025, Номер unknown, С. 143053 - 143053

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Research Approaches for the Discovery of Trypanocidal Molecular Prototypes from Plants DOI Creative Commons
Aboagye Kwarteng Dofuor

Natural Product Communications, Год журнала: 2025, Номер 20(1)

Опубликована: Янв. 1, 2025

In the absence of vaccines, chemotherapy remains a viable alternative for control African trypanosomiasis. To facilitate eradication trypanosomiasis, there is need to pay attention chemotherapeutic potential secondary metabolites obtained from natural sources. Despite increasing level paid towards pharmacological and medicinal properties trypanocidal molecular prototypes plants, integrative synthesis research methods relevant this progress lacking. Furthermore, applications machine learning in discovery plant-derived antitrypanosomal have not been well explored. The aim study thus provide critical appraisal plant context made, as highlight standard emerging investigative tools applicable drug process. It explores phytochemical, antitrypanosomals light traditional approaches. vitro, silico, vivo strategies investigations that may be employed are highlighted. Finally, promising particular benefit future also discussed. These insights ultimately optimization, target identification clinical development process against

Язык: Английский

Процитировано

0

FT-NIR Spectra of Different Dimensions Combined with Machine Learning and Image Recognition for Origin Identification: An Example of Panax notoginseng DOI Creative Commons

Zhi‐Tian Zuo,

Yuanzhong Wang, Zeng-Yu Yao

и другие.

ACS Omega, Год журнала: 2025, Номер 10(7), С. 7242 - 7255

Опубликована: Фев. 11, 2025

Panax notoginseng (P. notoginseng) is a traditional medicinal plant with high and economic values. The authenticity of P. often determines its quality, the quality geographical indication (GI)-producing areas usually superior to that other producing areas, which are exploited by unscrupulous traders affect market order. aim this study was characterize identify geographic origin using Fourier transform near-infrared (FT-NIR) spectroscopy, rapid detection combined multivariate analysis. use principal component analysis correlation spectral enabled initial differential characterization identification from different production areas. Then, random forest (RF) support vector machine (SVM) models were established, results show showed second-order derivative preprocessing successive projection algorithm feature extraction achieved 100% classification correctness model training time shortest. Further constructing image recognition model, synchronous two-dimensional spectroscopy (2DCOS) residual convolutional neural network accurate (accuracy 100%) did not require complex artificial process, maximize avoidance errors caused human factors. externally validated set method has strong generalization ability potential for application in

Язык: Английский

Процитировано

0