
Applied Computing and Geosciences, Год журнала: 2024, Номер unknown, С. 100216 - 100216
Опубликована: Дек. 1, 2024
Язык: Английский
Applied Computing and Geosciences, Год журнала: 2024, Номер unknown, С. 100216 - 100216
Опубликована: Дек. 1, 2024
Язык: Английский
AI in Civil Engineering, Год журнала: 2025, Номер 4(1)
Опубликована: Фев. 17, 2025
Язык: Английский
Процитировано
1Bulletin of Engineering Geology and the Environment, Год журнала: 2024, Номер 83(11)
Опубликована: Окт. 23, 2024
Язык: Английский
Процитировано
4Remote Sensing, Год журнала: 2025, Номер 17(3), С. 422 - 422
Опубликована: Янв. 26, 2025
The main objective of the present study was to develop an integrated approach combining remote sensing techniques and U-Net-based deep learning models for lithology mapping. methodology incorporates Landsat 8 imagery, ALOS PALSAR data, field surveys, complemented by derived products such as False Color Composites (FCCs), Minimum Noise Fraction (MNF), Principal Component Analysis (PCA). Dissection Index, a morphological index, calculated characterize geomorphological variability region. Three variations U-Net architecture, Dense U-Net, Residual Attention were implemented evaluate performance in lithological classification. Validation conducted using metrics accuracy, precision, recall, F1-score, mean intersection over union (mIoU). results highlight effectiveness model, which provided highest mapping accuracy superior feature extraction delineating flysch formations associated units. This demonstrates potential integrating data with advanced machine enhance geological challenging terrains.
Язык: Английский
Процитировано
0Elsevier eBooks, Год журнала: 2025, Номер unknown, С. 197 - 228
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Journal of Geophysical Research Machine Learning and Computation, Год журнала: 2025, Номер 2(2)
Опубликована: Май 10, 2025
Abstract Lithological thin‐section image classification is crucial in geology. Traditional manual methods rely on expert experience, being subjective and time‐consuming. Convolutional neural network (CNN)‐based automated has potential but less effective with more rock types limited training data, restricting its applications. We propose a lightweight framework that integrates the multi‐head self‐attention (MSA) mechanism into classical convolutional (CNN) architectures, hereinafter denoted as MSA‐CNN. Specifically, we employ VGG16 AlexNet backbone networks incorporate MSA to enhance feature extraction from small‐scale lithological data sets. The resultant MSA‐VGG16 MSA‐AlexNet models, after fine‐tuning, can capture geological features effectively continuously improve accuracy. conducted comprehensive experiments public set, which be partitioned 3, 34, 105 categories respectively. model exhibits strong generalization ability across all tasks. Notably, most challenging scenario categories, outperforms previously reported best‐performing same set by approximately 9.61%. These results strongly validate effectiveness of integrating CNNs for classification. They highlight this method practical applications represent significant advancement
Язык: Английский
Процитировано
0Underground Space, Год журнала: 2025, Номер unknown
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Опубликована: Май 15, 2025
Purpose Artificial intelligence, particularly deep learning (DL), has increasingly influenced various scientific fields, including soil mechanics. This paper aims to present a novel DL application of long short-term memory (LSTM) networks for predicting behaviour during constant rate strain (CRS) tests. Design/methodology/approach LSTMs are adept at capturing long-term dependencies in sequential data, making them suitable the complex, nonlinear stress–strain soil. evaluates LSTM configurations, optimising parameters such as step size, batch data sampling and training subset size balance prediction accuracy computational efficiency. The study uses comprehensive set from numerical finite element method simulations conducted with PLAXIS 2D laboratory CRS Findings proposed model, trained on lower stress levels, accurately forecasts higher levels. optimal setup achieved median error 3.59% 5.10% 3.86% presenting setup’s effectiveness. Originality/value approach reduces required time complete extensive testing, aligning sustainable industrial practices. findings suggest that can enhance geotechnical engineering applications by efficiently behaviour.
Язык: Английский
Процитировано
0Scientific Reports, Год журнала: 2025, Номер 15(1)
Опубликована: Май 28, 2025
Язык: Английский
Процитировано
0Artificial Intelligence in Geosciences, Год журнала: 2025, Номер unknown, С. 100127 - 100127
Опубликована: Июнь 1, 2025
Язык: Английский
Процитировано
0Waste Management Bulletin, Год журнала: 2024, Номер unknown
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1