The Prediction of Homogenized Effective Properties of Continuous Fiber Composites Based on a Deep Transfer Learning Approach
Composites Science and Technology,
Год журнала:
2025,
Номер
unknown, С. 111050 - 111050
Опубликована: Янв. 1, 2025
Язык: Английский
Semi-supervised ensemble model for TBM rock mass classification
Tunnelling and Underground Space Technology,
Год журнала:
2025,
Номер
162, С. 106632 - 106632
Опубликована: Апрель 14, 2025
Язык: Английский
Interpretable probabilistic prediction for the compression modulus and undrained shear strength of marine soil
Marine Georesources and Geotechnology,
Год журнала:
2025,
Номер
unknown, С. 1 - 13
Опубликована: Апрель 10, 2025
Язык: Английский
Innovative decision-making modelling for risk analysis in industrial informatization of infrastructure project
Journal of Industrial Information Integration,
Год журнала:
2025,
Номер
unknown, С. 100849 - 100849
Опубликована: Апрель 1, 2025
Язык: Английский
Probabilistic Estimation of Dielectric Constants for Multi-Layer Soils
Sustainable civil infrastructures,
Год журнала:
2025,
Номер
unknown, С. 301 - 312
Опубликована: Янв. 1, 2025
Язык: Английский
Enhancing smart city assessment: an advanced MCDM approach for urban performance evaluation
Sustainable Cities and Society,
Год журнала:
2024,
Номер
unknown, С. 105930 - 105930
Опубликована: Ноя. 1, 2024
Язык: Английский
Smart Techniques Promoting Sustainability in Construction Engineering and Management
Engineering,
Год журнала:
2024,
Номер
unknown
Опубликована: Сен. 1, 2024
Язык: Английский
An Ensemble Method for Soil Parameter Prediction Based on Multisource Data Fusion
Advances in Civil Engineering,
Год журнала:
2024,
Номер
2024(1)
Опубликована: Янв. 1, 2024
Site
investigation
is
crucial
in
geotechnical
engineering.
The
cone
penetration
test
(CPT)
and
the
multichannel
analysis
of
surface
waves
(MASWs)
are
widely
used
as
geophysical
methods,
respectively.
CPT
offers
high
precision
but
requires
a
cost
only
provides
soil
information
at
limited
locations.
In
contrast,
MASW
covers
broad
range
has
less
accuracy
compared
to
CPT.
This
study
proposes
novel
ensemble
prediction
method
that
fuses
both
data
overcome
limitations
using
either
dataset
alone.
employs
random
forest
(RF)
gradient
boosting
decision
tree
(GBDT)
achieve
transformation
between
shear
velocity
tip
resistance
(
V
s
–
q
c
)
unknown
Unlike
traditional
empirical
regression
models,
this
more
accurate
reliable
predictions
by
leveraging
complementary
strengths
MASW.
proposed
RF‐GBDT
model
validated
from
New
Zealand
Geotechnical
Database.
results
show
established
outperforms
simple
models
various
popular
machine
learning
predicting
Specifically,
integrating
increases
R
2
location
CPT3
0.477
0.758,
demonstrating
can
improve
parameters
areas
with
sparse
data.
Язык: Английский