An Ensemble Method for Soil Parameter Prediction Based on Multisource Data Fusion DOI Creative Commons
Mingyuan Wang, Shaoxiang Zeng,

Z. Zhang

и другие.

Advances in Civil Engineering, Год журнала: 2024, Номер 2024(1)

Опубликована: Янв. 1, 2024

Site investigation is crucial in geotechnical engineering. The cone penetration test (CPT) and the multichannel analysis of surface waves (MASWs) are widely used as geophysical methods, respectively. CPT offers high precision but requires a cost only provides soil information at limited locations. In contrast, MASW covers broad range has less accuracy compared to CPT. This study proposes novel ensemble prediction method that fuses both data overcome limitations using either dataset alone. employs random forest (RF) gradient boosting decision tree (GBDT) achieve transformation between shear velocity tip resistance ( V s – q c ) unknown Unlike traditional empirical regression models, this more accurate reliable predictions by leveraging complementary strengths MASW. proposed RF‐GBDT model validated from New Zealand Geotechnical Database. results show established outperforms simple models various popular machine learning predicting Specifically, integrating increases R 2 location CPT3 0.477 0.758, demonstrating can improve parameters areas with sparse data.

Язык: Английский

The Prediction of Homogenized Effective Properties of Continuous Fiber Composites Based on a Deep Transfer Learning Approach DOI
Zefei Wang, Sen Wang,

Changwen Ma

и другие.

Composites Science and Technology, Год журнала: 2025, Номер unknown, С. 111050 - 111050

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Semi-supervised ensemble model for TBM rock mass classification DOI
Shaoxiang Zeng, Yuanqin Tao, Honglei Sun

и другие.

Tunnelling and Underground Space Technology, Год журнала: 2025, Номер 162, С. 106632 - 106632

Опубликована: Апрель 14, 2025

Язык: Английский

Процитировано

1

Interpretable probabilistic prediction for the compression modulus and undrained shear strength of marine soil DOI
Songting Chen, Shaoxiang Zeng, Xiaodong Pan

и другие.

Marine Georesources and Geotechnology, Год журнала: 2025, Номер unknown, С. 1 - 13

Опубликована: Апрель 10, 2025

Язык: Английский

Процитировано

0

Innovative decision-making modelling for risk analysis in industrial informatization of infrastructure project DOI
Song-Shun Lin, Xu Zheng, Muhammet Deveci

и другие.

Journal of Industrial Information Integration, Год журнала: 2025, Номер unknown, С. 100849 - 100849

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Probabilistic Estimation of Dielectric Constants for Multi-Layer Soils DOI

Sunjuexu Pan,

Kaiyue Chen,

Honglei Sun

и другие.

Sustainable civil infrastructures, Год журнала: 2025, Номер unknown, С. 301 - 312

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Enhancing smart city assessment: an advanced MCDM approach for urban performance evaluation DOI
Song-Shun Lin, Xu Zheng

Sustainable Cities and Society, Год журнала: 2024, Номер unknown, С. 105930 - 105930

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

2

Smart Techniques Promoting Sustainability in Construction Engineering and Management DOI Creative Commons
Song-Shun Lin, Shui‐Long Shen, Annan Zhou

и другие.

Engineering, Год журнала: 2024, Номер unknown

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

1

An Ensemble Method for Soil Parameter Prediction Based on Multisource Data Fusion DOI Creative Commons
Mingyuan Wang, Shaoxiang Zeng,

Z. Zhang

и другие.

Advances in Civil Engineering, Год журнала: 2024, Номер 2024(1)

Опубликована: Янв. 1, 2024

Site investigation is crucial in geotechnical engineering. The cone penetration test (CPT) and the multichannel analysis of surface waves (MASWs) are widely used as geophysical methods, respectively. CPT offers high precision but requires a cost only provides soil information at limited locations. In contrast, MASW covers broad range has less accuracy compared to CPT. This study proposes novel ensemble prediction method that fuses both data overcome limitations using either dataset alone. employs random forest (RF) gradient boosting decision tree (GBDT) achieve transformation between shear velocity tip resistance ( V s – q c ) unknown Unlike traditional empirical regression models, this more accurate reliable predictions by leveraging complementary strengths MASW. proposed RF‐GBDT model validated from New Zealand Geotechnical Database. results show established outperforms simple models various popular machine learning predicting Specifically, integrating increases R 2 location CPT3 0.477 0.758, demonstrating can improve parameters areas with sparse data.

Язык: Английский

Процитировано

0