Deep-Learning-Enhanced CT Image Analysis for Predicting Hydraulic Conductivity of Coarse-Grained Soils DOI Open Access
Jiayi Peng, Zhenzhong Shen, Wenbing Zhang

и другие.

Water, Год журнала: 2023, Номер 15(14), С. 2623 - 2623

Опубликована: Июль 19, 2023

Permeability characteristics in coarse-grained soil is pivotal for enhancing the understanding of its seepage behavior and effectively managing it, directly impacting design, construction, operational safety embankment dams. Furthermore, these insights bridge diverse disciplines, including hydrogeology, civil engineering, environmental science, broadening their application relevance. In this novel research, we leverage a Convolutional Neural Network (CNN) model to achieve accurate segmentation CT images, surpassing traditional methods precision opening new avenues granulometric analysis. The three-dimensional (3D) models reconstructed from segmented images attest effectiveness our CNN model, highlighting potential automation soil-particle Our study uncovers validates empirical formulae ideal particle size discount factor soils. robust linear correlation underlying deepens predicts hydraulic under varying gradients. This advancement holds immense value soil-related engineering applications. findings underscore significant influence granular composition, particularly concentration fine particles, on tortuosity water-flow paths factor. practical implications extend multiple fields, water conservancy geotechnical engineering. Altogether, research represents step hydrodynamics where model’s unveils key into granulometry conductivity, laying strong foundation future

Язык: Английский

A two-stage hybrid model for dissolved oxygen prediction and control in aquaculture DOI
Ziang Chen, Huiting Hu, Shuangyin Liu

и другие.

Aquaculture International, Год журнала: 2025, Номер 33(1)

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Multi-agent reinforcement learning-driven adaptive controller tuning system for autonomous control of wastewater treatment plants: An offline learning approach DOI
KiJeon Nam, SungKu Heo, ChangKyoo Yoo

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 70, С. 107059 - 107059

Опубликована: Янв. 23, 2025

Язык: Английский

Процитировано

0

Machine learning and genetic algorithm for effluent quality optimization in wastewater treatment DOI Creative Commons
Chengyan Ye,

T.T. Tran,

Yang Yu

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 71, С. 107294 - 107294

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

Stochastic State-Space Modeling for Sludge Concentration Height at the Ucubamba Guangarcucho Wastewater Treatment Plant DOI Open Access
Cristian Luis Inca Balseca, Cristian Salazar, Jesús Rodríguez-Flores

и другие.

Water, Год журнала: 2025, Номер 17(6), С. 793 - 793

Опубликована: Март 10, 2025

Wastewater treatment plants consist of many biological reactors and a settler, representing an example large-scale, nonlinear systems. The wastewater plant in this study operates using activated sludge system, which relies on processes to treat effectively. It is for reason that iterative process modeling was used through the implementation Extended Kalman Filter (EKF) predict height layer secondary clarifiers, where accumulation occurs during sedimentation process. This technique consists maximum likelihood estimation works more consistently various noise scenarios. As result evaluation model estimated by (EKF), suitability tends be concluded on. In sense, prediction sewage systems represents complicated heteroscedastic process, can understood as phenomenon influenced variety factors. Therefore, does not identify problems estimates thorough examination residuals. state-space increases adaptability adjustability achieve structural optimization plant. approach viable effective solution efficient management polluting levels minimizing possible environmental impact out-of-control situations plants.

Язык: Английский

Процитировано

0

A deep semi-supervised learning framework towards multi-output soft sensors development and applications in wastewater treatment processes DOI
Dong Li, Chunhua Yang, Yonggang Li

и другие.

Journal of Water Process Engineering, Год журнала: 2023, Номер 57, С. 104654 - 104654

Опубликована: Дек. 9, 2023

Язык: Английский

Процитировано

9

Modeling and diagnosis of water quality parameters in wastewater treatment process based on improved particle swarm optimization and self-organizing neural network DOI
Hongliang Dai, Xingyu Liu,

Jinkun Zhao

и другие.

Journal of environmental chemical engineering, Год журнала: 2024, Номер 12(4), С. 113142 - 113142

Опубликована: Май 28, 2024

Язык: Английский

Процитировано

3

Exploring ANFIS application based on actual data from wastewater treatment plant for predicting effluent removal quality of selected major pollutants DOI
Liang Qiao, Pei Yang, Qi Leng

и другие.

Journal of Water Process Engineering, Год журнала: 2023, Номер 56, С. 104247 - 104247

Опубликована: Сен. 15, 2023

Язык: Английский

Процитировано

8

Data driven multiple objective optimization of AAO process towards wastewater effluent biological toxicity reduction DOI Creative Commons
Jie Hu, Ran Yin, Jinfeng Wang

и другие.

npj Clean Water, Год журнала: 2024, Номер 7(1)

Опубликована: Июль 12, 2024

Abstract While the anaerobic-anoxic-oxic (AAO) process is most widely applied biological wastewater treatment in municipal plants (WWTPs), it struggles to meet increasing demands on toxicity control of treated effluent. To tackle this challenge, study develops machine learning (ML)-based models for optimizing AAO towards improving its reduction efficacy The water quality parameters, and information (based nematode bioassay) effluent collected from 122 WWTPs China are used train models. validated accurately predict effluent’s parameters (average R 2 = 0.81) ratio (R 0.86). further improve reduction, we developed a multiple objective optimization framework optimize via unit recombination. In short-range combination, four-unit combined processes (up 79.8% anaerobic-aerobic-anaerobic-aerobic) significantly higher than others. After optimization, helps average 48.6% 70.7%, with maximum 87.5%. methodologies findings derived work expected provide foundation expansion, technical transformation WWTPs.

Язык: Английский

Процитировано

2

Hybrid data driven approach based on ANNs-PCA for wastewater treatment plant performance assessment DOI Creative Commons

Redouane Elharbili,

Tawfik El Moussaoui, Khalid El Ass

и другие.

Cleaner Water, Год журнала: 2024, Номер unknown, С. 100058 - 100058

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

2

Furnace Temperature Model Predictive Control Based on Particle Swarm Rolling Optimization for Municipal Solid Waste Incineration DOI Open Access
Hao Tian, Jian Tang, Tianzheng Wang

и другие.

Sustainability, Год журнала: 2024, Номер 16(17), С. 7670 - 7670

Опубликована: Сен. 4, 2024

Precise control of furnace temperature (FT) is crucial for the stable, efficient operation and pollution municipal solid waste incineration (MSWI) process. To address inherent nonlinearity uncertainty process, a FT strategy proposed. Firstly, by analyzing process characteristics MSWI in terms control, secondary air flow selected as manipulated variable to FT. Secondly, an prediction model based on Interval Type-2 Fuzzy Broad Learning System (IT2FBLS) developed, incorporating online parameter learning structural algorithms enhance accuracy. Next, particle swarm rolling optimization (PSRO) used solve optimal law sequence ensure efficiency. Finally, stability proposed method validated using Lyapunov theory, confirming controller’s reliability practical applications. Experiments actual operational data confirm method’s effectiveness.

Язык: Английский

Процитировано

1