Review of Battery-supercapacitor Hybrid Energy Storage Systems for Electric Vehicles
Results in Engineering,
Год журнала:
2024,
Номер
unknown, С. 103598 - 103598
Опубликована: Дек. 1, 2024
Язык: Английский
A comprehensive review of responsive draw solutes in forward osmosis: Categories, characteristics, mechanisms and modifications
L. Zhang,
Xinyang Sun,
Simiao Wu
и другие.
Desalination,
Год журнала:
2024,
Номер
583, С. 117676 - 117676
Опубликована: Апрель 25, 2024
Язык: Английский
Coupling of photovoltaic thermal with hybrid forward osmosis-membrane distillation: Energy and water production dynamic analysis
Journal of Water Process Engineering,
Год журнала:
2024,
Номер
64, С. 105710 - 105710
Опубликована: Июнь 29, 2024
Язык: Английский
A comprehensive review on forward osmosis mass transfer and fouling: Mathematical modeling, mechanism, prediction and optimization
Journal of Water Process Engineering,
Год журнала:
2025,
Номер
72, С. 107677 - 107677
Опубликована: Апрель 1, 2025
Язык: Английский
Carbon quantum dots for sustainable water treatment: A critical review on synthesis, properties, challenges, and applications in forward osmosis desalination technologies
D. Dsilva Winfred Rufuss,
K. S. Sonu Ashritha
Chemical Engineering Journal,
Год журнала:
2025,
Номер
unknown, С. 163059 - 163059
Опубликована: Апрель 1, 2025
Язык: Английский
Performance prediction model for desalination plants using modified grey wolf optimizer based artificial neural network approach
Desalination and Water Treatment,
Год журнала:
2024,
Номер
319, С. 100411 - 100411
Опубликована: Май 24, 2024
Desalination
represents
an
effective
method
for
alleviating
water
scarcity,
applying
algorithmic
techniques
to
predict
the
performance
of
reverse
osmosis
(RO)
desalination
plants,
Modified
Grey
Wolf
Optimizer
(MGWO)
based
Artificial
Neural
Networks
(ANN)
can
membrane
distillation
(MD)
equipment.
Four
experimental
inputs
are
selected:
feed
salt
concentration(35-140
g/h),
flow
rate(400-600
L/h),
evaporator
inlet
temperature
(60-80℃),
and
condenser
(20-30℃).
The
permeate
flux
(L/h
m2)
is
selected
as
output.
Ten
prediction
models
were
proposed
compared
with
existing
(ANN,
WOA-ANN,
GWO-ANN).
results
showed
that
MGWO-ANN
model-5
best
regression
results:
R2=99.3%,
mean
square
error
(MSE)=0.004.
This
model
outperformed
ANN
(R2=98.8%,
MSE=0.060),
WOA-ANN
(R2=99.1%,
MSE=0.005)
GWO-ANN
(R2=98.9%,
MSE=0.007).
Model-5
has
a
single
hidden
layer
(H=1),
13
nodes
(n=13),
10
search
agents
(SA=10),
75%-20%-05%
dataset
division.
Its
residual
within
acceptable
limits
(spanning
-0.1
0.2).
Optimizing
number
(n)
(SA)
improve
training
efficiency
accuracy
model,
capable
more
accurately
predicting
plants.
Язык: Английский