Harnessing Explainable AI for Sustainable Agriculture: SHAP-Based Feature Selection in Multi-Model Evaluation of Irrigation Water Quality Indices DOI Open Access
Enas E. Hussein, Bilel Zerouali, Nadjem Bailek

и другие.

Water, Год журнала: 2024, Номер 17(1), С. 59 - 59

Опубликована: Дек. 29, 2024

Irrigation water quality is crucial for sustainable agriculture and environmental health, influencing crop productivity ecosystem balance globally. This study evaluates the performance of multiple deep learning models in classifying Water Quality Index (IWQI), addressing challenge accurate prediction by examining impact increasing input complexity, particularly through chemical ions derived indices. The tested include convolutional neural networks (CNN), CNN-Long Short-Term Memory (CNN-LSTM), CNN-bidirectional Long (CNN-BiLSTM), Gated Recurrent Unit (CNN-BiGRUs). Feature selection via SHapley Additive exPlanations (SHAP) provided insights into individual feature contributions to model predictions. objectives were compare 16 identify most effective approach IWQI classification. utilized data from 166 wells Algeria’s Naama region, with 70% training 30% testing. Results indicate that CNN-BiLSTM outperformed others, achieving an accuracy 0.94 area under curve (AUC) 0.994. While CNN effectively capture spatial features, they struggle temporal dependencies—a limitation addressed LSTM BiGRU layers, which further enhanced bidirectional processing model. importance analysis revealed index (qi) qi-Na was significant predictor both Model 15 (0.68) (0.67). qi-EC showed a slight decrease importance, 0.19 0.18 between models, while qi-SAR qi-Cl maintained similar levels. Notably, included qi-HCO3 minor score 0.02. Overall, these findings underscore critical role sodium levels predictions suggest areas enhancing performance. Despite computational demands model, results contribute development robust management, thereby promoting agricultural sustainability.

Язык: Английский

Deep learning model based on coupled SWAT and interpretable methods for water quality prediction under the influence of non-point source pollution DOI
Juan Huan,

Yixiong Fan,

Xiangen Xu

и другие.

Computers and Electronics in Agriculture, Год журнала: 2025, Номер 231, С. 109985 - 109985

Опубликована: Янв. 23, 2025

Язык: Английский

Процитировано

1

Applying Machine Learning Approach to Design Operational Control Strategies for a Wastewater Treatment Plant in Typical Scenarios DOI Open Access
Han Li, Chao Liu, Xiao Guo

и другие.

Water, Год журнала: 2025, Номер 17(3), С. 310 - 310

Опубликована: Янв. 23, 2025

When confronted with different influent conditions, WWTPs often lack targeted and effective operational control strategies. For the three typical scenarios of low C/N, water temperature high temperature, 441 carbon source dosage DO concentration coordination strategies were designed under premise ensuring effluent quality meets standard. The purpose was to provide clear guidance for efficient operation in scenarios. To determine optimal strategy, prediction model based on LSTM GRU constructed testing. results showed that: (1) LSTM-GRU is better than SVR RF predicting COD TN; (2) In C/N scenario, should be controlled between 0.23 t/h 0.26 t/h, ranging from 2.0 mg/L 2.6 mg/L; (3) 0.25 0.27 2.8 (4) 0.20 2.5 mg/L.

Язык: Английский

Процитировано

1

Advanced Temporal Deep Learning Framework for Enhanced Predictive Modeling in Industrial Treatment Systems DOI Creative Commons

S Ramya,

S Srinath,

Pushpa Tuppad

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104158 - 104158

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Which riverine water quality parameters can be predicted by meteorologically-driven deep learning? DOI
Huang Sheng, Yueling Wang, Jun Xia

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 946, С. 174357 - 174357

Опубликована: Июнь 28, 2024

Язык: Английский

Процитировано

6

GA-ML: enhancing the prediction of water electrical conductivity through genetic algorithm-based end-to-end hyperparameter tuning DOI

Muhammed Furkan Gül,

Halit Bakır

Earth Science Informatics, Год журнала: 2025, Номер 18(2)

Опубликована: Янв. 18, 2025

Язык: Английский

Процитировано

0

High-Resolution Flow and Phosphorus Forecasting Using ANN Models, Catering for Extremes in the Case of the River Swale (UK) DOI Creative Commons
Elisabeta Cristina Timiș, Horia Hangan, Mircea Vasile Cristea

и другие.

Hydrology, Год журнала: 2025, Номер 12(2), С. 20 - 20

Опубликована: Янв. 21, 2025

The forecasting of river flows and pollutant concentrations is essential in supporting mitigation measures for anthropogenic climate change effects on rivers their environment. This paper addresses two aspects receiving little attention the literature: high-resolution (sub-daily) data-driven modeling prediction phosphorus compounds. It presents a series artificial neural networks (ANNs) to forecast soluble reactive (SRP) total (TP) under wide range conditions, including low storm events (0.74 484 m3/s). Results show correct along stretch River Swale (UK) with an anticipation up 15 h, at resolutions 3 h. concentration improved compared previous application advection–dispersion model.

Язык: Английский

Процитировано

0

Review of Machine Learning Methods for Steady State Capacity and Transient Production Forecasting in Oil and Gas Reservoir DOI Creative Commons
Dongyan Fan, S.Y. Lai, Hai Sun

и другие.

Energies, Год журнала: 2025, Номер 18(4), С. 842 - 842

Опубликована: Фев. 11, 2025

Accurate oil and gas production forecasting is essential for optimizing field development operational efficiency. Steady-state capacity prediction models based on machine learning techniques, such as Linear Regression, Support Vector Machines, Random Forest, Extreme Gradient Boosting, effectively address complex nonlinear relationships through feature selection, hyperparameter tuning, hybrid integration, achieving high accuracy reliability. These maintain relative errors within acceptable limits, offering robust support reservoir management. Recent advancements in spatiotemporal modeling, Physics-Informed Neural Networks (PINNs), agent-based modeling have further enhanced transient forecasting. Spatiotemporal capture temporal dependencies spatial correlations, while PINN integrates physical laws into neural networks, improving interpretability robustness, particularly sparse or noisy data. Agent-based complements these techniques by combining measured data with numerical simulations to deliver real-time, high-precision predictions of dynamics. Despite challenges computational scalability, sensitivity, generalization across diverse reservoirs, future developments, including multi-source lightweight architectures, real-time predictive capabilities, can improve forecasting, addressing the complexities supporting sustainable resource management global energy security.

Язык: Английский

Процитировано

0

Mesocosm constructed wetlands for tetracycline-stressed effluent treatment: Evaluating substrate and vegetation synergies DOI

Yang Lan,

Kai Chen,

Yanxia Ma

и другие.

Journal of Water Process Engineering, Год журнала: 2025, Номер 71, С. 107194 - 107194

Опубликована: Фев. 15, 2025

Язык: Английский

Процитировано

0

An enhanced combined model for water quality prediction utilizing spatiotemporal features and physical-informed constraints DOI
Jiaming Zhu,

Dai Wan,

Jingyi Shao

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126937 - 126937

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Feature-driven hybrid attention learning for accurate water quality prediction DOI
Xuan Yao, Zeshui Xu, Tianyu Ren

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127160 - 127160

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0