Machine Learning-Enhanced Water and Air Quality Monitoring Technologies and Applications DOI

E Varun,

L. Rajesh,

M. Lokeshwari

и другие.

Advances in IT standards and standardization research (AISSR) book series/Advances in IT standards and standardization research series, Год журнала: 2024, Номер unknown, С. 79 - 110

Опубликована: Дек. 18, 2024

This chapter points out machine learning-Ml-that is set to alter air and water quality monitoring technologies. Traditional systems usually work satisfactorily; however, there always exists deficiencies regarding data processing accuracy of response in real time. For this kind system, ML algorithms would become advantageous for such carry large-scale environmental analysis, thereby enhancing predictive capabilities realize early detection pollutants. The goes on explain techniques under supervised unsupervised learning, along with their applications sensor networks, remote sensing, fusion. Case studies the successful implementation ML-driven solution show improvement decision-making. Further, addresses challenge associated integration privacy, algorithmic bias, need robust training datasets.

Язык: Английский

Dynamic classification and attention mechanism-based bidirectional long short-term memory network for daily runoff prediction in Aksu River basin, Northwest China DOI
Wei Qing, Ju Rui Yang, Fangbing Fu

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 374, С. 124121 - 124121

Опубликована: Янв. 15, 2025

Язык: Английский

Процитировано

1

Advanced Temporal Deep Learning Framework for Enhanced Predictive Modeling in Industrial Treatment Systems DOI Creative Commons

S Ramya,

S Srinath,

Pushpa Tuppad

и другие.

Results in Engineering, Год журнала: 2025, Номер unknown, С. 104158 - 104158

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Small hydropower impacts on water quality: a comparative analysis of different assessment methods DOI Creative Commons
Paweł Tomczyk,

Michał Tymcio,

Alban Kuriqi

и другие.

Water Resources and Industry, Год журнала: 2025, Номер unknown, С. 100282 - 100282

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

Developing a real-time water quality simulation toolbox using machine learning and application programming interface DOI

Gi-Hun Bang,

Na-Hyeon Gwon,

Min‐Jeong Cho

и другие.

Journal of Environmental Management, Год журнала: 2025, Номер 377, С. 124719 - 124719

Опубликована: Фев. 28, 2025

Язык: Английский

Процитировано

0

The role of optimizers in developing data-driven model for predicting lake water quality incorporating advanced water quality model DOI
Md Galal Uddin, Apoorva Bamal, Mir Talas Mahammad Diganta

и другие.

Alexandria Engineering Journal, Год журнала: 2025, Номер 122, С. 411 - 435

Опубликована: Март 18, 2025

Язык: Английский

Процитировано

0

Simulating the Deterioration Behavior of Tunnel Elements Using Amalgamation of Regression Trees and State-of-the-Art Metaheuristics DOI Creative Commons
Eslam Mohammed Abdelkader, Abobakr Al-Sakkaf, Moaaz Elkabalawy

и другие.

Mathematics, Год журнала: 2025, Номер 13(7), С. 1021 - 1021

Опубликована: Март 21, 2025

Tunnel infrastructures worldwide face escalating deterioration challenges due to aging materials, increasing load demands, and exposure harsh environmental conditions. Accurately predicting the onset progression of is paramount for ensuring structural safety, optimizing maintenance interventions, prolonging service life. However, complex interplay environmental, material, operational factors poses significant current predictive models. Additionally, they are constrained by small datasets a narrow range tunnel elements that limit their generalizability. This paper presents novel hybrid metaheuristic-based regression tree (REGT) model designed enhance accuracy robustness predictions. Leveraging metaheuristic algorithms’ strengths, developed method jointly optimizes critical hyperparameters identifies most relevant features prediction. A comprehensive dataset encompassing material properties, stressors, traffic loads, historical condition assessments was compiled development. Comparative analyses against conventional trees, artificial neural networks, support vector machines demonstrated consistently outperformed baseline techniques regarding While trees classic machine learning models, no single variant dominated all elements. Furthermore, optimization framework mitigated overfitting provided interpretable insights into primary driving deterioration. Finally, findings this research highlight potential models as powerful tools infrastructure management, offering actionable predictions enable proactive strategies resource optimization. study contributes advancing field modeling in civil engineering, with implications sustainable management infrastructure.

Язык: Английский

Процитировано

0

An improved graph neural network integrating indicator attention and spatio-temporal correlation for dissolved oxygen prediction DOI Creative Commons
Fei Ding, Shilong Hao,

Mingcen Jiang

и другие.

Ecological Informatics, Год журнала: 2025, Номер unknown, С. 103126 - 103126

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

A comprehensive review of various environmental factors' roles in remote sensing techniques for assessing surface water quality DOI Creative Commons
Mir Talas Mahammad Diganta, Md Galal Uddin, Tomasz Dabrowski

и другие.

The Science of The Total Environment, Год журнала: 2024, Номер 957, С. 177180 - 177180

Опубликована: Ноя. 23, 2024

Язык: Английский

Процитировано

3

Decontamination of fish aquarium wastewater by ozonation catalyzed by multi-metal loaded activated carbons for sustainable aquaculture DOI
Amir Ikhlaq,

Mamoona Kanwal,

Osama Shaheen Rizvi

и другие.

Process Safety and Environmental Protection, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

0

Machine Learning-Enhanced Water and Air Quality Monitoring Technologies and Applications DOI

E Varun,

L. Rajesh,

M. Lokeshwari

и другие.

Advances in IT standards and standardization research (AISSR) book series/Advances in IT standards and standardization research series, Год журнала: 2024, Номер unknown, С. 79 - 110

Опубликована: Дек. 18, 2024

This chapter points out machine learning-Ml-that is set to alter air and water quality monitoring technologies. Traditional systems usually work satisfactorily; however, there always exists deficiencies regarding data processing accuracy of response in real time. For this kind system, ML algorithms would become advantageous for such carry large-scale environmental analysis, thereby enhancing predictive capabilities realize early detection pollutants. The goes on explain techniques under supervised unsupervised learning, along with their applications sensor networks, remote sensing, fusion. Case studies the successful implementation ML-driven solution show improvement decision-making. Further, addresses challenge associated integration privacy, algorithmic bias, need robust training datasets.

Язык: Английский

Процитировано

0