Computers in Biology and Medicine, Год журнала: 2023, Номер 160, С. 106950 - 106950
Опубликована: Апрель 17, 2023
Язык: Английский
Computers in Biology and Medicine, Год журнала: 2023, Номер 160, С. 106950 - 106950
Опубликована: Апрель 17, 2023
Язык: Английский
Computers in Biology and Medicine, Год журнала: 2022, Номер 146, С. 105618 - 105618
Опубликована: Май 18, 2022
Язык: Английский
Процитировано
143Journal of Bionic Engineering, Год журнала: 2023, Номер 21(1), С. 374 - 408
Опубликована: Сен. 26, 2023
Язык: Английский
Процитировано
133Computer Methods in Applied Mechanics and Engineering, Год журнала: 2022, Номер 403, С. 115652 - 115652
Опубликована: Ноя. 4, 2022
Язык: Английский
Процитировано
114Journal of Bionic Engineering, Год журнала: 2023, Номер 20(5), С. 2359 - 2388
Опубликована: Май 17, 2023
Язык: Английский
Процитировано
111Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(4), С. 2683 - 2723
Опубликована: Янв. 12, 2023
Язык: Английский
Процитировано
109Neurocomputing, Год журнала: 2022, Номер 503, С. 325 - 362
Опубликована: Июнь 28, 2022
Язык: Английский
Процитировано
95IEEE Transactions on Evolutionary Computation, Год журнала: 2023, Номер 27(6), С. 1896 - 1911
Опубликована: Янв. 23, 2023
In this article, a new feature selection (FS) algorithm, called simple, fast, and efficient (SFE), is proposed for high-dimensional datasets. The SFE algorithm performs its search process using agent two operators: 1) nonselection 2) selection. It comprises phases: exploration exploitation. the phase, operator global in entire problem space irrelevant, redundant, trivial, noisy features changes status of from selected mode to nonselected mode. exploitation searches with high impact on classification results successful FS However, after reducing dimensionality dataset, performance cannot be increased significantly. these situations, an evolutionary computational method could used find more subset reduced space. To overcome issue, article proposes hybrid SFE-PSO (particle swarm optimization) optimal subset. efficiency effectiveness are compared 40 Their performances were six recently algorithms. obtained indicate that algorithms significantly outperform other can as effective selecting
Язык: Английский
Процитировано
65Journal of Advanced Research, Год журнала: 2023, Номер 53, С. 261 - 278
Опубликована: Янв. 20, 2023
Feature selection is a typical NP-hard problem. The main methods include filter, wrapper-based, and embedded methods. Because of its characteristics, the wrapper method must swarm intelligence algorithm, performance in feature closely related to algorithm's quality. Therefore, it essential choose design suitable algorithm improve based on wrapper. Harris hawks optimization (HHO) superb approach that has just been introduced. It high convergence rate powerful global search capability but an unsatisfactory effect dimensional problems or complex problems. we introduced hierarchy HHO's ability deal with selection. To make obtain good accuracy fewer features run faster selection, improved HHO named EHHO. On 30 UCI datasets, (EHHO) can achieve very classification less running time features. We first conducted extensive experiments 23 classical benchmark functions compared EHHO many state-of-the-art metaheuristic algorithms. Then transform into binary (bEHHO) through conversion function verify extraction data sets. Experiments show better speed minimum than other peers. At same time, HHO, significantly weakness dealing functions. Moreover, datasets repository, bEHHO comparative Compared original bHHO, excellent also bHHO time.
Язык: Английский
Процитировано
55Mathematics and Computers in Simulation, Год журнала: 2023, Номер 209, С. 55 - 86
Опубликована: Фев. 10, 2023
Язык: Английский
Процитировано
42Structural Health Monitoring, Год журнала: 2024, Номер unknown
Опубликована: Июль 24, 2024
For the poor model generalization and low diagnostic efficiency of fault diagnosis under imbalanced distributions, a novel method using variational autoencoder generation adversarial network improved convolutional neural network, named VGAIC-FDM, is proposed in this paper. First, to capture local features vibration signals, continuous wavelet transform employed convert original one-dimensional signals into time–frequency images. Second, for data dimensionality reduction simplification, images are processed grayscale generate single-channel Then, sample augmentation performed on balance dataset by network. Finally, generated fused trained focus-loss-optimized CNN classifier achieve unbalanced conditions. The experimental results show that VGAIC-FDM effectively captures potential spatial distribution real samples alleviates impact caused inconsistent difficulty classification. As result, it enhances performance when dealing with datasets, leading higher accuracy F1-score values.
Язык: Английский
Процитировано
26