A grade-based search adaptive random slime mould optimizer for lupus nephritis image segmentation DOI

Manrong Shi,

Chi Chen, Lei Liu

и другие.

Computers in Biology and Medicine, Год журнала: 2023, Номер 160, С. 106950 - 106950

Опубликована: Апрель 17, 2023

Язык: Английский

Multilevel threshold image segmentation for COVID-19 chest radiography: A framework using horizontal and vertical multiverse optimization DOI
Hang Su, Dong Zhao, Hela Elmannai

и другие.

Computers in Biology and Medicine, Год журнала: 2022, Номер 146, С. 105618 - 105618

Опубликована: Май 18, 2022

Язык: Английский

Процитировано

143

Geyser Inspired Algorithm: A New Geological-inspired Meta-heuristic for Real-parameter and Constrained Engineering Optimization DOI
Mojtaba Ghasemi, Mohsen Zare,

Amir Zahedi

и другие.

Journal of Bionic Engineering, Год журнала: 2023, Номер 21(1), С. 374 - 408

Опубликована: Сен. 26, 2023

Язык: Английский

Процитировано

133

Young’s double-slit experiment optimizer : A novel metaheuristic optimization algorithm for global and constraint optimization problems DOI
Mohamed Abdel‐Basset, Doaa El-Shahat, Mohammed Jameel

и другие.

Computer Methods in Applied Mechanics and Engineering, Год журнала: 2022, Номер 403, С. 115652 - 115652

Опубликована: Ноя. 4, 2022

Язык: Английский

Процитировано

114

A Global Best-guided Firefly Algorithm for Engineering Problems DOI
Mohsen Zare, Mojtaba Ghasemi,

Amir Zahedi

и другие.

Journal of Bionic Engineering, Год журнала: 2023, Номер 20(5), С. 2359 - 2388

Опубликована: Май 17, 2023

Язык: Английский

Процитировано

111

Slime Mould Algorithm: A Comprehensive Survey of Its Variants and Applications DOI Open Access
Farhad Soleimanian Gharehchopogh, Alaettin Uçan, Turgay İbrikçi

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2023, Номер 30(4), С. 2683 - 2723

Опубликована: Янв. 12, 2023

Язык: Английский

Процитировано

109

Simulated annealing-based dynamic step shuffled frog leaping algorithm: Optimal performance design and feature selection DOI
Yun Liu, Ali Asghar Heidari, Zhennao Cai

и другие.

Neurocomputing, Год журнала: 2022, Номер 503, С. 325 - 362

Опубликована: Июнь 28, 2022

Язык: Английский

Процитировано

95

SFE: A Simple, Fast, and Efficient Feature Selection Algorithm for High-Dimensional Data DOI
Behrouz Ahadzadeh, Moloud Abdar, Fatemeh Safara

и другие.

IEEE Transactions on Evolutionary Computation, Год журнала: 2023, Номер 27(6), С. 1896 - 1911

Опубликована: Янв. 23, 2023

In this article, a new feature selection (FS) algorithm, called simple, fast, and efficient (SFE), is proposed for high-dimensional datasets. The SFE algorithm performs its search process using agent two operators: 1) nonselection 2) selection. It comprises phases: exploration exploitation. the phase, operator global in entire problem space irrelevant, redundant, trivial, noisy features changes status of from selected mode to nonselected mode. exploitation searches with high impact on classification results successful FS However, after reducing dimensionality dataset, performance cannot be increased significantly. these situations, an evolutionary computational method could used find more subset reduced space. To overcome issue, article proposes hybrid SFE-PSO (particle swarm optimization) optimal subset. efficiency effectiveness are compared 40 Their performances were six recently algorithms. obtained indicate that algorithms significantly outperform other can as effective selecting

Язык: Английский

Процитировано

65

Hierarchical Harris hawks optimizer for feature selection DOI Creative Commons
Lemin Peng, Zhennao Cai, Ali Asghar Heidari

и другие.

Journal of Advanced Research, Год журнала: 2023, Номер 53, С. 261 - 278

Опубликована: Янв. 20, 2023

Feature selection is a typical NP-hard problem. The main methods include filter, wrapper-based, and embedded methods. Because of its characteristics, the wrapper method must swarm intelligence algorithm, performance in feature closely related to algorithm's quality. Therefore, it essential choose design suitable algorithm improve based on wrapper. Harris hawks optimization (HHO) superb approach that has just been introduced. It high convergence rate powerful global search capability but an unsatisfactory effect dimensional problems or complex problems. we introduced hierarchy HHO's ability deal with selection. To make obtain good accuracy fewer features run faster selection, improved HHO named EHHO. On 30 UCI datasets, (EHHO) can achieve very classification less running time features. We first conducted extensive experiments 23 classical benchmark functions compared EHHO many state-of-the-art metaheuristic algorithms. Then transform into binary (bEHHO) through conversion function verify extraction data sets. Experiments show better speed minimum than other peers. At same time, HHO, significantly weakness dealing functions. Moreover, datasets repository, bEHHO comparative Compared original bHHO, excellent also bHHO time.

Язык: Английский

Процитировано

55

A novel reinforcement learning based tuna swarm optimization algorithm for autonomous underwater vehicle path planning DOI
Zheping Yan, Jinyu Yan, Yifan Wu

и другие.

Mathematics and Computers in Simulation, Год журнала: 2023, Номер 209, С. 55 - 86

Опубликована: Фев. 10, 2023

Язык: Английский

Процитировано

42

Fault diagnosis using variational autoencoder GAN and focal loss CNN under unbalanced data DOI
Weihan Li,

Dunke Liu,

Yang Li

и другие.

Structural Health Monitoring, Год журнала: 2024, Номер unknown

Опубликована: Июль 24, 2024

For the poor model generalization and low diagnostic efficiency of fault diagnosis under imbalanced distributions, a novel method using variational autoencoder generation adversarial network improved convolutional neural network, named VGAIC-FDM, is proposed in this paper. First, to capture local features vibration signals, continuous wavelet transform employed convert original one-dimensional signals into time–frequency images. Second, for data dimensionality reduction simplification, images are processed grayscale generate single-channel Then, sample augmentation performed on balance dataset by network. Finally, generated fused trained focus-loss-optimized CNN classifier achieve unbalanced conditions. The experimental results show that VGAIC-FDM effectively captures potential spatial distribution real samples alleviates impact caused inconsistent difficulty classification. As result, it enhances performance when dealing with datasets, leading higher accuracy F1-score values.

Язык: Английский

Процитировано

26