IEEE Transactions on Geoscience and Remote Sensing, Год журнала: 2024, Номер 62, С. 1 - 14
Опубликована: Янв. 1, 2024
Язык: Английский
IEEE Transactions on Geoscience and Remote Sensing, Год журнала: 2024, Номер 62, С. 1 - 14
Опубликована: Янв. 1, 2024
Язык: Английский
Lecture notes in networks and systems, Год журнала: 2025, Номер unknown, С. 49 - 59
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127604 - 127604
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Sustainable Cities and Society, Год журнала: 2022, Номер 86, С. 104112 - 104112
Опубликована: Авг. 12, 2022
Язык: Английский
Процитировано
16Lecture notes in networks and systems, Год журнала: 2023, Номер unknown, С. 56 - 64
Опубликована: Янв. 1, 2023
Язык: Английский
Процитировано
9Forecasting, Год журнала: 2024, Номер 6(1), С. 55 - 80
Опубликована: Янв. 9, 2024
Local weather forecasts in the Arctic outside of settlements are challenging due to dearth ground-level observation stations and high computational costs. During winter, these critical help prepare for potentially hazardous conditions, while spring, may be used determine flood risk during annual snow melt. To this end, a hybrid VMD-WT-InceptionTime model is proposed multi-horizon multivariate forecasting remote-region temperatures Alaska over short-term horizons (the next seven days). First, Spearman correlation coefficient employed analyze relationship between each input variable forecast target temperature. The most output-correlated sequences decomposed using variational mode decomposition (VMD) and, ultimately, wavelet transform (WT) extract time-frequency patterns intrinsic raw inputs. resulting fed into deep InceptionTime forecasting. This technique has been developed evaluated 35+ years data from three locations Alaska. Different experiments performance benchmarks conducted learning models (e.g., Time Series Transformers, LSTM, MiniRocket), statistical conventional machine baselines GBDT, SVR, ARIMA). All performances assessed four metrics: root mean squared error, absolute percentage determination, directional accuracy. Superior achieved consistently technique.
Язык: Английский
Процитировано
2Theoretical and Applied Climatology, Год журнала: 2024, Номер 156(1)
Опубликована: Дек. 12, 2024
Язык: Английский
Процитировано
2Stochastic Environmental Research and Risk Assessment, Год журнала: 2024, Номер 38(9), С. 3695 - 3717
Опубликована: Авг. 12, 2024
Язык: Английский
Процитировано
1International Journal of Computers and Applications, Год журнала: 2023, Номер 46(2), С. 122 - 135
Опубликована: Дек. 8, 2023
Accurate weather forecasting is crucial for various applications, including agriculture and environmental monitoring. However, existing deep learning based methods typically use only temperature observations as input, which do not consider spatial location (e.g. neighboring regions usually show similar trends) increase the difficulty in predicting anomalous fluctuations temperature. To address issue, a multimodal transformer model proposed. This uses observational data (time series data) input but also incorporates spatially rich ERA5 reanalysis (spatio-temporal data). The proposed method has two distinctive features: (1) sequence merging module to highlight dominating features reduce cost of attention calculations. (2) cross-all-modal mechanism capture dependencies between current modality all modalities. was evaluated on three datasets from plain challenging high-altitude mountainous regions. Results showed that outperforms terms MAE MSE, offering promising new solution prediction. Our code are available at https://github.com/Adam618/MTTF.
Язык: Английский
Процитировано
3Engineering Applications of Artificial Intelligence, Год журнала: 2023, Номер 127, С. 107259 - 107259
Опубликована: Окт. 11, 2023
Язык: Английский
Процитировано
1Applied Soft Computing, Год журнала: 2023, Номер 152, С. 111196 - 111196
Опубликована: Дек. 27, 2023
Язык: Английский
Процитировано
1