None DOI Creative Commons
Abiola Akinnubi,

Jeremiah Ajiboye

Journal of Robotics and Automation Research, Год журнала: 2023, Номер 4(2)

Опубликована: Июль 3, 2023

This survey discusses the concept of knowledge graphs, including their construction, extraction, and applications.Various tools such as Zotero, Web Science, Google Scholar, EndNote, VosViewer are used to analyze visualize collected data.A Boolean query mechanism ensures gathered material is relevant study.The discussion includes studies on relation extraction using graph neural networks, application graphs in biomedical research, use embedding healthcare.These highlight growing importance managing representing complex information.Notable discussed include role connecting related medical information, technology healthcare, potential benefits limitations data analysis.This paper provides valuable insights into information how they can help provide new various fields.It suggests future directions for research this area, highlighting continued exploration innovation realize fully.

Язык: Английский

A review of recommender systems based on knowledge graph embedding DOI
J. Zhang, Azlan Mohd Zain, Kai-Qing Zhou

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 250, С. 123876 - 123876

Опубликована: Март 29, 2024

Язык: Английский

Процитировано

18

Dual-view multi-modal contrastive learning for graph-based recommender systems DOI
Feipeng Guo, Zifan Wang, Xiaopeng Wang

и другие.

Computers & Electrical Engineering, Год журнала: 2024, Номер 116, С. 109213 - 109213

Опубликована: Март 29, 2024

Язык: Английский

Процитировано

15

Multilingual entity alignment by abductive knowledge reasoning on multiple knowledge graphs DOI
Muhammad Usman Akhtar, Jin Liu, Zhiwen Xie

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 139, С. 109660 - 109660

Опубликована: Ноя. 22, 2024

Язык: Английский

Процитировано

8

NPGCL: neighbor enhancement and embedding perturbation with graph contrastive learning for recommendation DOI
Xing Wu, Haodong Wang,

Junfeng Yao

и другие.

Applied Intelligence, Год журнала: 2025, Номер 55(6)

Опубликована: Фев. 5, 2025

Язык: Английский

Процитировано

0

A survey on knowledge graph-based click-through rate prediction DOI
Ying Jin, Yanwu Yang

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 127501 - 127501

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Sentiment Analysis for E-commerce Product Reviews: Current Trends and Future Directions DOI Open Access

Salma Adel Elzeheiry,

Wael A. Gab-Allah,

Nagham Mekky

и другие.

Опубликована: Май 23, 2023

Numerous goods and services are now offered through online platforms due to the recent growth of transactions like e-commerce. Users have trouble locating product that best suits them from numerous products available in shopping. Many studies deep learning-based recommender systems (RSs) focused on intricate relationships between attributes users items. Deep learning techniques used consumer or item-related traits improve quality personalized many areas, such as tourism, news, Various companies, primarily e-commerce, utilize sentiment analysis enhance effectively navigate today's business environment. Customer feedback regarding a is gathered analysis, which uses contextual data split it into separate polarities. The explosive rise e-commerce industry has resulted large body literature different perspectives. Researchers made an effort categorize recommended future possibilities for study field grown. There several challenges fake reviews, frequency user advertisement click fraud, code-mixing. In this review, we introduce overview preliminary design Second, concept learning, discussed. Third, represent versions commercial dataset. Finally, explain various difficulties facing RS research directions.

Язык: Английский

Процитировано

7

MBDL: Exploring dynamic dependency among various types of behaviors for recommendation DOI
H. Y. Zhang, Mingxin Gan

Information Systems, Год журнала: 2024, Номер 124, С. 102407 - 102407

Опубликована: Май 18, 2024

Язык: Английский

Процитировано

2

A novel KG-based recommendation model via relation-aware attentional GCN DOI
Jihu Wang, Yuliang Shi, Han Yu

и другие.

Knowledge-Based Systems, Год журнала: 2023, Номер 275, С. 110702 - 110702

Опубликована: Июнь 8, 2023

Язык: Английский

Процитировано

5

Temporal-Guided Knowledge Graph-Enhanced Graph Convolutional Network for Personalized Movie Recommendation Systems DOI Creative Commons
Chin‐Yi Chen, Jih‐Jeng Huang

Future Internet, Год журнала: 2023, Номер 15(10), С. 323 - 323

Опубликована: Сен. 28, 2023

Traditional movie recommendation systems are increasingly falling short in the contemporary landscape of abundant information and evolving user behaviors. This study introduced temporal knowledge graph recommender system (TKGRS), a ground-breaking algorithm that addresses limitations existing models. TKGRS uniquely integrates convolutional networks (GCNs), matrix factorization, decay factors to offer robust dynamic mechanism. The algorithm’s architecture comprises an initial embedding layer for identifying item, followed by GCN nuanced understanding relationships fully connected layers prediction. A factor is also used give weightage recent user–item interactions. Empirical validation using MovieLens 100K, 1M, Douban datasets showed outperformed state-of-the-art models according evaluation metrics, i.e., RMSE MAE. innovative approach sets new standard opens avenues future research advanced algorithms machine learning techniques.

Язык: Английский

Процитировано

4

A Novel Multi-behavior Contrastive Learning and Knowledge-Enhanced Framework for Recommendation DOI
Hao Liu, Tao Sun, Zhiping Zhang

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 399 - 410

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

1