Energy, Год журнала: 2024, Номер 297, С. 131142 - 131142
Опубликована: Апрель 3, 2024
Язык: Английский
Energy, Год журнала: 2024, Номер 297, С. 131142 - 131142
Опубликована: Апрель 3, 2024
Язык: Английский
Knowledge-Based Systems, Год журнала: 2023, Номер 284, С. 111257 - 111257
Опубликована: Дек. 22, 2023
Язык: Английский
Процитировано
136Artificial Intelligence Review, Год журнала: 2024, Номер 57(4)
Опубликована: Март 23, 2024
Abstract This paper innovatively proposes the Black Kite Algorithm (BKA), a meta-heuristic optimization algorithm inspired by migratory and predatory behavior of black kite. The BKA integrates Cauchy mutation strategy Leader to enhance global search capability convergence speed algorithm. novel combination achieves good balance between exploring solutions utilizing local information. Against standard test function sets CEC-2022 CEC-2017, as well other complex functions, attained best performance in 66.7, 72.4 77.8% cases, respectively. effectiveness is validated through detailed analysis statistical comparisons. Moreover, its application solving five practical engineering design problems demonstrates potential addressing constrained challenges real world indicates that it has significant competitive strength comparison with existing techniques. In summary, proven value advantages variety due excellent performance. source code publicly available at https://www.mathworks.com/matlabcentral/fileexchange/161401-black-winged-kite-algorithm-bka .
Язык: Английский
Процитировано
98Knowledge-Based Systems, Год журнала: 2023, Номер 282, С. 111081 - 111081
Опубликована: Окт. 18, 2023
Язык: Английский
Процитировано
93Computer Methods in Applied Mechanics and Engineering, Год журнала: 2023, Номер 415, С. 116200 - 116200
Опубликована: Июль 10, 2023
Язык: Английский
Процитировано
79Biomimetics, Год журнала: 2023, Номер 8(5), С. 386 - 386
Опубликована: Авг. 24, 2023
In this research article, we uphold the principles of No Free Lunch theorem and employ it as a driving force to introduce an innovative game-based metaheuristic technique named Golf Optimization Algorithm (GOA). The GOA is meticulously structured with two distinctive phases, namely, exploration exploitation, drawing inspiration from strategic dynamics player conduct observed in sport golf. Through comprehensive assessments encompassing fifty-two objective functions four real-world engineering applications, efficacy rigorously examined. results optimization process reveal GOA’s exceptional proficiency both exploitation strategies, effectively striking harmonious equilibrium between two. Comparative analyses against ten competing algorithms demonstrate clear statistically significant superiority across spectrum performance metrics. Furthermore, successful application intricate energy commitment problem, considering network resilience, underscores its prowess addressing complex challenges. For convenience community, provide MATLAB implementation codes for proposed methodology, ensuring accessibility facilitating further exploration.
Язык: Английский
Процитировано
51Artificial Intelligence Review, Год журнала: 2024, Номер 57(3)
Опубликована: Фев. 16, 2024
Abstract
This
paper
introduces
HLOA,
a
novel
metaheuristic
optimization
algorithm
that
mathematically
mimics
crypsis,
skin
darkening
or
lightening,
blood-squirting,
and
move-to-escape
defense
methods.
In
crypsis
behavior,
the
lizard
changes
its
color
by
becoming
translucent
to
avoid
detection
predators.
The
horned
can
lighten
darken
skin,
depending
on
whether
not
it
needs
decrease
increase
solar
thermal
gain.
lightening
strategy
is
modeled
including
stimulating
hormone
melanophore
rate(
$$\alpha$$
Язык: Английский
Процитировано
40Advances in Engineering Software, Год журнала: 2024, Номер 195, С. 103694 - 103694
Опубликована: Июнь 15, 2024
Язык: Английский
Процитировано
40Expert Systems with Applications, Год журнала: 2024, Номер 248, С. 123362 - 123362
Опубликована: Фев. 1, 2024
Язык: Английский
Процитировано
35PLoS ONE, Год журнала: 2024, Номер 19(8), С. e0308474 - e0308474
Опубликована: Авг. 19, 2024
This research article presents the Multi-Objective Hippopotamus Optimizer (MOHO), a unique approach that excels in tackling complex structural optimization problems. The (HO) is novel meta-heuristic methodology draws inspiration from natural behaviour of hippos. HO built upon trinary-phase model incorporates mathematical representations crucial aspects Hippo's behaviour, including their movements aquatic environments, defense mechanisms against predators, and avoidance strategies. conceptual framework forms basis for developing multi-objective (MO) variant MOHO, which was applied to optimize five well-known truss structures. Balancing safety precautions size constraints concerning stresses on individual sections constituent parts, these problems also involved competing objectives, such as reducing weight structure maximum nodal displacement. findings six popular methods were used compare results. Four industry-standard performance measures this comparison qualitative examination finest Pareto-front plots generated by each algorithm. average values obtained Friedman rank test analysis unequivocally showed MOHO outperformed other resolving significant quickly. In addition finding preserving more Pareto-optimal sets, recommended algorithm produced excellent convergence variance objective decision fields. demonstrated its potential navigating objectives through diversity analysis. Additionally, swarm effectively visualize MOHO's solution distribution across iterations, highlighting superior behaviour. Consequently, exhibits promise valuable method issues.
Язык: Английский
Процитировано
35The Journal of Supercomputing, Год журнала: 2024, Номер 80(15), С. 22913 - 23017
Опубликована: Июль 1, 2024
Язык: Английский
Процитировано
34