A priori information-guided generative adversarial network for data augmentation: application to pipeline fault diagnosis DOI Creative Commons

Chuang Guan,

Rou Shang,

Fan Yang

и другие.

Systems Science & Control Engineering, Год журнала: 2024, Номер 12(1)

Опубликована: Апрель 30, 2024

With the rapid development of artificial intelligence, deep learning is considered a promising technique for intelligent fault diagnosis using large amounts data in various industrial fields. Under such circumstances, imbalanced datasets real world will not only hinder further classification models, but also degrade performance existing models. To overcome this limitation, paper proposes novel Mel-Frequency Cepstral Coefficent-based Generative Adversarial Network (MFCC-GAN) to augment high-quality small class data. Specifically, MFCC first used capture time- and frequency-domain features signals as priori information, which then fed into generative model. The temporal structural energy contained prior information can provide effective guidance process model map Gaussian distribution real-world distribution. Moreover, contrastive loss introduced refine discriminative generated signals, aiming improve distinguishability among different health states. Experimental results show that MFCC-GAN algorithm improves quality fidelity compared other state-of-the-art algorithms.

Язык: Английский

Bearing fault diagnosis via fusing small samples and training multi-state Siamese neural networks DOI
Chuanbo Wen, Yipeng Xue, Weibo Liu

и другие.

Neurocomputing, Год журнала: 2024, Номер 576, С. 127355 - 127355

Опубликована: Янв. 30, 2024

Язык: Английский

Процитировано

21

A novel framework for motor bearing fault diagnosis based on multi-transformation domain and multi-source data DOI
Yipeng Xue, Chuanbo Wen, Zidong Wang

и другие.

Knowledge-Based Systems, Год журнала: 2023, Номер 283, С. 111205 - 111205

Опубликована: Ноя. 17, 2023

Язык: Английский

Процитировано

25

Generative artificial intelligence and data augmentation for prognostic and health management: Taxonomy, progress, and prospects DOI
Shen Liu, Jinglong Chen, Yong Feng

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124511 - 124511

Опубликована: Июнь 24, 2024

Язык: Английский

Процитировано

9

An Improved Generative Adversarial Network with Feature Filtering for Imbalanced Data DOI Creative Commons
Jun Dou, Yan Song

International Journal of Network Dynamics and Intelligence, Год журнала: 2023, Номер unknown, С. 100017 - 100017

Опубликована: Дек. 21, 2023

Article An Improved Generative Adversarial Network with Feature Filtering for Imbalanced Data Jun Dou 1, and Yan Song 2,* 1 Department of Systems Science, University Shanghai Science Technology, 200093, China 2 Control Engineering, * Correspondence: [email protected];Tel.:+86-21-55271299; fax:+86-21-55271299 Received: 7 October 2023 Accepted: 31 Published: 21 December Abstract: adversarial network (GAN) is an overwhelming yet promising method to address the data imbalance problem. However, most existing GANs that are usually inspired by computer vision techniques have not taken significance redundancy features into consideration delicately, probably producing rough samples overlapping incorrectness. To this problem, a novel GAN called improved feature filtering (IGAN-FF) proposed, which establishes new loss function model training replacing traditional Euclidean distance Mahalanobis taking ℓ1,2-norm regularization term consideration. The remarkable merits proposed IGAN-FF can be highlighted as follows: 1) utilization make fair evaluation different attributes without neglecting any trivial/small-scale but significant ones. In addition, it mitigate disturbance caused correlation between features; 2) embedding contributes greatly guaranteeing sparsity well helps reduce risk overfitting. Finally, empirical experiments on 16 well-known imbalanced datasets demonstrate our performs better at metrics than other 11 state-of-the-art methods.

Язык: Английский

Процитировано

19

Multidimensional information fusion and broad learning system-based condition recognition for energy pipeline safety DOI
Chengyuan Zhu,

Yanyun Pu,

Zhuoling Lyu

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 300, С. 112259 - 112259

Опубликована: Июль 17, 2024

Язык: Английский

Процитировано

6

Imbalanced data augmentation for pipeline fault diagnosis: A multi-generator switching adversarial network DOI

Rou Shang,

Hongli Dong, Chuang Wang

и другие.

Control Engineering Practice, Год журнала: 2023, Номер 144, С. 105839 - 105839

Опубликована: Дек. 30, 2023

Язык: Английский

Процитировано

16

Pipeline damage identification in nuclear industry using a particle swarm optimization-enhanced machine learning approach DOI
Qi Jiang,

Wenzhong Qu,

Xiao Li

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108467 - 108467

Опубликована: Апрель 23, 2024

Язык: Английский

Процитировано

5

An intelligent water supply pipeline leakage detection method based on SV-WTBSVM DOI
Xiaoting Guo, Huadong Song, Yanli Zeng

и другие.

Measurement Science and Technology, Год журнала: 2024, Номер 35(4), С. 046125 - 046125

Опубликована: Янв. 23, 2024

Abstract Water supply pipeline leakage not only wastes resources but also causes dangerous accidents. Therefore, detecting the state of pipelines is a critical task. With expansion scale water pipeline, amount data collected by leak detection system gradually increasing. Moreover, there an imbalance sample in data. This makes performance traditional methods deteriorate. To solve above issues, this paper proposes intelligent method based on support vector weighted twin-bound machine (SV-WTBSVM). Noise negatively affects classifier. eliminate effect noise, hybrid denoising algorithm improved complete ensemble empirical mode decomposition with adaptive noise (ICEEMDAN) used for to filter out Twin bound (TBSVM) classical classification that has been widely leakage. decrease accuracy caused imbalance, SV-WTBSVM oversamples minority class samples distance density and integrally undersamples majority obtain balanced sample. Since often have multiple working conditions, binary cannot meet requirement, combines ‘one-to-one’ strategy address multi-classification problem. Finally, experiments verified retains advantages fast training speed simple operation TBSVM improves generalization ability when dealing imbalanced

Язык: Английский

Процитировано

4

Submarine pipeline corrosion rate prediction model based on high-dimensional mapping augmentation and residual update gradient forest DOI Creative Commons
Hongbing Liu,

Zhenhao Zhu,

Jingyang Zhang

и другие.

Applied Ocean Research, Год журнала: 2025, Номер 155, С. 104432 - 104432

Опубликована: Янв. 21, 2025

Язык: Английский

Процитировано

0

A survey on learning from data with label noise via deep neural networks DOI Creative Commons
Baoye Song,

Shihao Zhao,

L. Minh Dang

и другие.

Systems Science & Control Engineering, Год журнала: 2025, Номер 13(1)

Опубликована: Апрель 4, 2025

Язык: Английский

Процитировано

0