Feature Enhancement via Linear Transformation and Its Application in Fault Diagnosis DOI
Biao He, Quan Qian, Yi Qin

и другие.

IEEE Internet of Things Journal, Год журнала: 2024, Номер 11(12), С. 21895 - 21903

Опубликована: Март 18, 2024

The performance of neural networks is directly affected by the features obtained from backbones fault diagnosis networks. To obtain clear and improve networks, this paper constructs a new block based on linear transformation. Firstly, feature vector divided into decisive component an invalid component. Then, it worth noting that orthogonality these two components beneficial to model learning. According this, are extracted using spaces constructed relationships between four fundamental sub-spaces matrix. In sub-spaces, row space null employed extract useless component, respectively. Both implemented layers designed as encoder-decoder structure ensure existence space. spaces, constraint term proposed modify their weights. Lastly, cosine similarity input entirely. When incorporating some classic classifying they can achieve improved accuracy. Moreover, when comparing conventional spatial attention mechanisms, module demonstrates superior overall performance, including accuracy, antinoise ability, generalization ability.

Язык: Английский

Multi-sensor data fusion-enabled lightweight convolutional double regularization contrast transformer for aerospace bearing small samples fault diagnosis DOI
Yutong Dong, Hongkai Jiang, Mingzhe Mu

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102573 - 102573

Опубликована: Май 2, 2024

Язык: Английский

Процитировано

29

FEV-Swin: Multi-source heterogeneous information fusion under a variant swin transformer framework for intelligent cross-domain fault diagnosis DOI
Keyi Zhou, Keyi Zhou, Bin Jiang

и другие.

Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 112982 - 112982

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

5

Time-frequency supervised contrastive learning via pseudo-labeling: An unsupervised domain adaptation network for rolling bearing fault diagnosis under time-varying speeds DOI
Bin Pang,

Qiuhai Liu,

Zhenduo Sun

и другие.

Advanced Engineering Informatics, Год журнала: 2023, Номер 59, С. 102304 - 102304

Опубликована: Дек. 11, 2023

Язык: Английский

Процитировано

44

An Intelligent Deep Learning Framework for Traffic Flow Imputation and Short-term Prediction Based on Dynamic Features DOI
Xianhui Zong, Yong Qi, He Yan

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 300, С. 112178 - 112178

Опубликована: Июнь 25, 2024

Язык: Английский

Процитировано

9

A digital twin system for centrifugal pump fault diagnosis driven by transfer learning based on graph convolutional neural networks DOI
Zifeng Xu, Zhe Wang,

Chaojia Gao

и другие.

Computers in Industry, Год журнала: 2024, Номер 163, С. 104155 - 104155

Опубликована: Авг. 30, 2024

Язык: Английский

Процитировано

7

MGTN-DSI: A multi-sensor graph transfer network considering dual structural information for fault diagnosis under varying working conditions DOI

Jianjie Liu,

Xianfeng Yuan, Xilin Yang

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103119 - 103119

Опубликована: Янв. 15, 2025

Язык: Английский

Процитировано

1

DyGAT-FTNet: A Dynamic Graph Attention Network for Multi-Sensor Fault Diagnosis and Time–Frequency Data Fusion DOI Creative Commons
Hongjun Duan, Guorong Chen, Yuan Yu

и другие.

Sensors, Год журнала: 2025, Номер 25(3), С. 810 - 810

Опубликована: Янв. 29, 2025

Fault diagnosis in modern industrial and information systems is critical for ensuring equipment reliability operational safety, but traditional methods have difficulty effectively capturing spatiotemporal dependencies fault-sensitive features multi-sensor data, especially rarely considering dynamic between data. To address these challenges, this study proposes DyGAT-FTNet, a novel graph neural network model tailored to fault detection. The dynamically constructs association graphs through learnable construction mechanism, enabling automatic adjacency matrix generation based on time–frequency derived from the short-time Fourier transform (STFT). Additionally, attention (DyGAT) enhances extraction of by assigning node weights. pooling layer further aggregates optimizes feature representation.Experimental evaluations two benchmark detection datasets, XJTUSuprgear dataset SEU dataset, show that DyGAT-FTNet significantly outperformed existing classification accuracy, with accuracies 1.0000 0.9995, respectively, highlighting its potential practical applications.

Язык: Английский

Процитировано

1

SCG-GFFE: A Self-Constructed graph fault feature extractor based on graph Auto-encoder algorithm for unlabeled single-variable vibration signals of harmonic reducer DOI
Shilong Sun, Hao Ding,

Zida Zhao

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102579 - 102579

Опубликована: Май 3, 2024

Язык: Английский

Процитировано

5

Fault detection and isolation for multi-type sensors in nuclear power plants via a knowledge-guided spatial-temporal model DOI
Weiqing Lin, Xiren Miao, Jing Chen

и другие.

Knowledge-Based Systems, Год журнала: 2024, Номер 300, С. 112182 - 112182

Опубликована: Июнь 26, 2024

Язык: Английский

Процитировано

5

Richly connected spatial–temporal graph neural network for rotating machinery fault diagnosis with multi-sensor information fusion DOI
Chengming Wang, Yanxue Wang, Yiyan Wang

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2024, Номер 225, С. 112230 - 112230

Опубликована: Дек. 19, 2024

Язык: Английский

Процитировано

4