Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 126347 - 126347
Опубликована: Дек. 1, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 126347 - 126347
Опубликована: Дек. 1, 2024
Язык: Английский
Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103197 - 103197
Опубликована: Фев. 15, 2025
Язык: Английский
Процитировано
1Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102711 - 102711
Опубликована: Июль 13, 2024
Язык: Английский
Процитировано
7Digital Signal Processing, Год журнала: 2024, Номер 151, С. 104528 - 104528
Опубликована: Апрель 28, 2024
Язык: Английский
Процитировано
6Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113275 - 113275
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Knowledge-Based Systems, Год журнала: 2024, Номер 305, С. 112598 - 112598
Опубликована: Окт. 5, 2024
Язык: Английский
Процитировано
3Knowledge-Based Systems, Год журнала: 2025, Номер unknown, С. 113137 - 113137
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 145, С. 110228 - 110228
Опубликована: Фев. 13, 2025
Язык: Английский
Процитировано
0Nonlinear Dynamics, Год журнала: 2025, Номер unknown
Опубликована: Апрель 4, 2025
Язык: Английский
Процитировано
0Sound&Vibration, Год журнала: 2025, Номер 59(2), С. 2904 - 2904
Опубликована: Апрель 25, 2025
The train transmission system is a critical component of railway operations, playing pivotal role in ensuring service safety and reliability. However, existing condition monitoring approaches face two major challenges: (1) the coupling rich multimodal signals, such as vibration, acoustics, current, rotational speed, often overlooked, limiting accuracy; (2) small data problem signals adversely affects performance neural networks. To address these issues, this paper proposes Multimodal Fusion Improved Transformer Network for Condition Monitoring Train Transmission Systems. proposed network first explores interdependencies among different modalities compresses to reduced dimensions through correlation analysis. It then infers global dependencies computing self-attention scores based on Q, K, V matrices. approach better than traditional CNN-based models handling single-modality constraints, with former demonstrated be more accurate trustworthy publicly available datasets.
Язык: Английский
Процитировано
0Sensors, Год журнала: 2024, Номер 24(16), С. 5400 - 5400
Опубликована: Авг. 21, 2024
This article presents a comprehensive collection of formulas and calculations for hand-crafted feature extraction condition monitoring signals. The documented features include 123 the time domain 46 frequency domain. Furthermore, machine learning-based methodology is presented to evaluate performance in fault classification tasks using seven data sets different rotating machines. evaluation involves ranking methods select best ten per method each database, be subsequently evaluated by three types classifiers. process applied exhaustively groups, combining our databases with an external benchmark. A summary table results classifiers also presented, including percentage number required achieve that value. Through graphic resources, it has been possible show prevalence certain over others, how they are associated order importance assigned methods. In same way, finding which have highest appearance percentages database all experiments possible. suggest effective technique low computational cost high interpretability identification diagnosis.
Язык: Английский
Процитировано
2