Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 126183 - 126183
Опубликована: Дек. 1, 2024
Язык: Английский
Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 126183 - 126183
Опубликована: Дек. 1, 2024
Язык: Английский
Robotics and Computer-Integrated Manufacturing, Год журнала: 2025, Номер 94, С. 102942 - 102942
Опубликована: Янв. 7, 2025
Язык: Английский
Процитировано
2IEEE/CAA Journal of Automatica Sinica, Год журнала: 2024, Номер 11(8), С. 1819 - 1835
Опубликована: Июль 19, 2024
Язык: Английский
Процитировано
10Concurrency and Computation Practice and Experience, Год журнала: 2025, Номер 37(3)
Опубликована: Янв. 13, 2025
ABSTRACT In practical engineering problems, uncertainties due to prediction errors and fluctuations in equipment efficiency often lead constrained many‐objective optimization problem with interval parameters (ICMaOPs). These problems pose significant challenges for evolutionary algorithms, particularly balancing solution convergence, diversity, feasibility, uncertainty. To address these challenges, a personalized indicator‐based algorithm (PI‐ICMaOEA) specifically designed ICMaOPs is proposed. The PI‐ICMaOEA integrates comprehensive quality indicator that encapsulates uncertainty, feasibility factors, converting multiple objectives high‐dimensional search spaces into single evaluative metric. Each factor's weight assigned based on individual performance, objective dimension, the evolving conditions of population. By prioritizing individuals excellent values mating environmental selection, effectively enhances selection pressure spaces. Comparative simulations demonstrate highly competitive, offering robust ICMaOPs.
Язык: Английский
Процитировано
0Neural Computing and Applications, Год журнала: 2025, Номер unknown
Опубликована: Янв. 27, 2025
Язык: Английский
Процитировано
0Swarm and Evolutionary Computation, Год журнала: 2025, Номер 94, С. 101903 - 101903
Опубликована: Март 14, 2025
Язык: Английский
Процитировано
0Applied Soft Computing, Год журнала: 2025, Номер unknown, С. 113108 - 113108
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Designs, Год журнала: 2024, Номер 8(6), С. 136 - 136
Опубликована: Дек. 20, 2024
This study evaluates and compares the computational performance practical applicability of advanced path planning algorithms for Unmanned Aerial Vehicles (UAVs) in dynamic obstacle-rich environments. The Adaptive Multi-Objective Path Planning (AMOPP) framework is highlighted its ability to balance multiple objectives, including length, smoothness, collision avoidance, real-time responsiveness. Through experimental analysis, AMOPP demonstrates superior performance, with a 15% reduction length compared A*, achieving an average 450 m. Its angular deviation 8.0° ensures smoother trajectories than traditional methods like Genetic Algorithm Particle Swarm Optimization (PSO). Moreover, achieves 0% rate across all simulations, surpassing heuristic-based Cuckoo Search Bee Colony Optimization, which exhibit higher rates. Real-time responsiveness another key strength AMOPP, re-planning time 0.75 s, significantly outperforming A* RRT*. complexities each algorithm are analyzed, exhibiting complexity O(k·n) space O(n), ensuring scalability efficiency large-scale operations. also presents comprehensive qualitative quantitative comparison 14 using 3D visualizations, highlighting their strengths, limitations, suitable application scenarios. By integrating weighted optimization penalty-based strategies spline interpolation, provides robust solution UAV planning, particularly scenarios requiring smooth navigation adaptive re-planning. work establishes as promising real-time, efficient, safe operations
Язык: Английский
Процитировано
1Applied Mathematics and Nonlinear Sciences, Год журнала: 2024, Номер 9(1)
Опубликована: Янв. 1, 2024
Abstract Many researchers and educational institutions are committed to exploring the modes strategies of industry-education integration, which promotes close connection between education industrial needs by jointly carrying out teaching, research, practice activities. This paper proposes a multi-objective optimization strategy based on genetic algorithms, aims enhance optimize talent cultivation model through adjustments resource matching scheme teaching task allocation for integration. The mechanical specialty higher vocational college puts forward 10 kinds industry-teaching integration schemes tasks, combined with enterprise demand students’ ability, substitutes them into constructed model, solves algorithm arrive at optimal G, has an adaptability value 0.571, degree 6 under G is highest, means that strengthen professional knowledge about 6. Teaching specialized Additionally, satisfaction distribution graph from questionnaire data indicates students feel more content construction development during optimized mode results expert evaluation demonstrate industry not only yields outstanding outcomes in collaborative training (4.32 points) but also partially addresses shortage positions (4.13 points). However, it still requires enhancement environment (3.13
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2024, Номер unknown, С. 126183 - 126183
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0