A Portfolio Study Based on the Markowitz Model - An Example of the Bitcoin Market DOI

Zhang Xiao

Highlights in Business Economics and Management, Год журнала: 2024, Номер 45, С. 857 - 866

Опубликована: Дек. 28, 2024

Nowadays, financial markets are becoming more and complex, new portfolios need to be built cope with them. This paper aims build a Markowitz model for portfolio research based on calibrations nine different industries. Firstly, the weights minimum variance combinations calculated by using valid information such as mean, standard deviation, variance, covariance. Second, this maximize return of portfolio, diversify investment risk selected finally determine optimal portfolio. The can adjusted reduce or increase adjusting percentage Bitcoin. further explores Bitcoin variable. derives volatility least risky 11.04% -0.46%, respectively, when is calibrated without Bitcoin, its Sharpe 14.61% 7.11%, respectively. When contains risk-minimal 9.45% 0.6%, Sharpe-optimal 16.31% 37.35%, Ultimately, it concluded that has some risk-reducing return-enhancing effects.

Язык: Английский

Artificial Neural Networks with Soft Attention: Natural Language Processing for Phishing Email Detection Optimized with Modified Metaheuristics DOI
Bojana Lakicevic, Žaklina Spalević,

Igor Volas

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 421 - 438

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Intrusion detection using metaheuristic optimization within IoT/IIoT systems and software of autonomous vehicles DOI Creative Commons
Pavle Dakić, Miodrag Živković, Luka Jovanovic

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Окт. 2, 2024

Язык: Английский

Процитировано

7

Particle swarm optimization tuned multi-headed long short-term memory networks approach for fuel prices forecasting DOI
Andjela Jovanovic, Luka Jovanovic, Miodrag Živković

и другие.

Journal of Network and Computer Applications, Год журнала: 2024, Номер 233, С. 104048 - 104048

Опубликована: Ноя. 7, 2024

Язык: Английский

Процитировано

5

Sentiment classification for insider threat identification using metaheuristic optimized machine learning classifiers DOI Creative Commons

Djordje Mladenovic,

Miloš Antonijević, Luka Jovanovic

и другие.

Scientific Reports, Год журнала: 2024, Номер 14(1)

Опубликована: Окт. 28, 2024

This study examines the formidable and complex challenge of insider threats to organizational security, addressing risks such as ransomware incidents, data breaches, extortion attempts. The research involves six experiments utilizing email, HTTP, file content data. To combat threats, emerging Natural Language Processing techniques are employed in conjunction with powerful Machine Learning classifiers, specifically XGBoost AdaBoost. focus is on recognizing sentiment context malicious actions, which considered less prone change compared commonly tracked metrics like location time access. enhance detection, a term frequency-inverse document frequency-based approach introduced, providing more robust, adaptable, maintainable method. Moreover, acknowledges significant impact hyperparameter selection classifier performance employs various contemporary optimizers, including modified version red fox optimization algorithm. proposed undergoes testing three simulated scenarios using public dataset, showcasing commendable outcomes.

Язык: Английский

Процитировано

4

Interpretable artificial intelligence for advancing slope stability assessment techniques with Technosols DOI
Jiazhou Li, Mengjie Huang, M Ma

и другие.

Soil Use and Management, Год журнала: 2025, Номер 41(1)

Опубликована: Янв. 1, 2025

Abstract Slope stability is a critical factor in ensuring the safety and longevity of infrastructure, especially areas prone to landslides soil erosion. Traditional methods slope assessment, while widely used, often struggle provide accurate results when applied Technosols—soils modified by human activities composed waste materials. This study proposes novel approach that combines artificial intelligence techniques improve precision predictions these complex types. The method utilizes model based on neural networks, trained large dataset factors. Unlike conventional techniques, proposed integrates multiple environmental material properties more assessment compared other models. model's performance demonstrated R 2 values .999975 for test datasets, which significantly better than similar work statistical analysis. Moreover, incorporating Shapley Additive Explanations (SHAP), we clear understanding impact various parameters stability. findings suggest machine learning‐based offers reliable tool evaluation Technosols, making it valuable addition field.

Язык: Английский

Процитировано

0

Hybrid pathfinding optimization for the Lightning Network with Reinforcement Learning DOI
Danila Valko, Daniel Kudenko⋆

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 146, С. 110225 - 110225

Опубликована: Фев. 13, 2025

Язык: Английский

Процитировано

0

Two-tier deep and machine learning approach optimized by adaptive multi-population firefly algorithm for software defects prediction DOI
John Philipose Villoth, Miodrag Živković, Tamara Živković

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129695 - 129695

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

0

IoT System Intrusion Detection with XGBoost Optimized by Modified Metaheuristics DOI

Stefan Ivanovic,

Miodrag Živković, Miloš Antonijević

и другие.

Communications in computer and information science, Год журнала: 2025, Номер unknown, С. 345 - 359

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

STG-LSTM: Spatial-Temporal Graph-Based Long Short-Term Memory for Vehicle Trajectory Prediction DOI Creative Commons
Daniela Daniel Ndunguru,

Xing Fan,

Chrispus Zacharia Oroni

и другие.

Multimodal Transportation, Год журнала: 2025, Номер unknown, С. 100222 - 100222

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

0

FA-SconvAE-LSTM: Feature-Aligned Stacked Convolutional Autoencoder with Long Short-Term Memory Network for Soft Sensor Modeling DOI
Ping Wu,

Z. Miao,

Ke Wang

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 150, С. 110535 - 110535

Опубликована: Март 17, 2025

Язык: Английский

Процитировано

0