Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Journal of Environmental Management, Год журнала: 2024, Номер 373, С. 123472 - 123472
Опубликована: Ноя. 28, 2024
This research presents an AI-driven, explainable energy management model that aligns with Net Zero sustainability objectives by optimizing consumption, enhancing predictive accuracy, and ensuring transparency. The integrates machine learning algorithms, like Gradient Boosting Machines (GBM) Random Forests, utilizes techniques SHAP LIME for interpretability. Data was split 70/30 training validation, 10-times validation to avoid overfitting, achieving a Mean Absolute Error (MAE) of 1.26-1.53 Root Squared (RMSE) 1.97-2.06. model's accuracy reached R
Язык: Английский
Процитировано
2Опубликована: Янв. 1, 2024
Язык: Английский
Процитировано
0