4D Printing of Polyethylene Glycol‐Grafted Carbon Nanotube‐Reinforced Polyvinyl Chloride–Polycaprolactone Composites for Enhanced Shape Recovery and Thermomechanical Performance DOI Creative Commons
Davood Rahmatabadi,

Mohammad Amin Yousefi,

Shahrooz Shamsolhodaei

и другие.

Advanced Intelligent Systems, Год журнала: 2025, Номер unknown

Опубликована: Апрель 1, 2025

4D printing with carbon nanotube (CNT)‐reinforced polymers enables advanced shape‐changing materials but faces challenges in CNT dispersion and performance. This study addresses these limitations by functionalizing CNTs polyethylene glycol (PEG), significantly enhancing interfacial bonding within biocompatible polyvinyl chloride (PVC)‐polycaprolactone (PCL) composites. The composites, tailored for biomedical applications a glass transition temperature (T g ) of 37–41 °C, exhibit enhanced mechanical, thermal, shape‐memory properties. At 0.5 wt% CNT, the composite achieves 25% increase tensile strength, 95.78% shape fixity, 5‐s recovery time, offering an optimal balance flexibility, rapid recovery. Higher concentrations (5 wt%) further improve thermal stability, increasing decomposition 20 °C storage modulus 670 MPa, although ductility is reduced. PEG grafting prevents agglomeration, enabling high filler loading without compromising printability, as confirmed through uniform nanoparticle defect‐free fused deposition modeling (FDM)‐printed structures. These intelligent composites combine biocompatibility, durability, excellent performance, making them suitable diverse structural applications, such adaptive medical devices, ergonomic shoe soles, wearable biosensors. novel material provides versatile platform high‐performance, 4D‐printed systems that address current polymer nanocomposites advance engineering innovations.

Язык: Английский

Experimental evaluation of build orientation effects on the microstructure, thermal, mechanical, and shape memory properties of SLA 3D-printed epoxy resin DOI
Mana Nabavian Kalat, Yasamin Ziai, Kinga Dziedzic

и другие.

European Polymer Journal, Год журнала: 2025, Номер unknown, С. 113829 - 113829

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

3

Thermo-mechanical viscoelastic characterization and modelling of 4D printed shape memory polymers DOI Creative Commons
Israr Ud Din, Siddhesh Kulkarni, Kamran A. Khan

и другие.

Polymer Testing, Год журнала: 2025, Номер unknown, С. 108708 - 108708

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

2

Designing advanced 4D printing thermo-sensitive shape memory polymer blends for enhanced mechanical and shape memory performances DOI

Karima Bouguermouh,

Mohamed Habibi, Luc Laperrière

и другие.

Progress in Additive Manufacturing, Год журнала: 2025, Номер unknown

Опубликована: Янв. 30, 2025

Язык: Английский

Процитировано

2

Prediction of Mechanical Properties of 3D Printed Particle-Reinforced Resin Composites DOI Open Access
Kimberley Rooney, Yu Dong, A.K. Basak

и другие.

Journal of Composites Science, Год журнала: 2024, Номер 8(10), С. 416 - 416

Опубликована: Окт. 10, 2024

This review explores fundamental analytical modelling approaches using conventional composite theory and artificial intelligence (AI) to predict mechanical properties of 3D printed particle-reinforced resin composites via digital light processing (DLP). Their mechanisms, advancement, limitations, validity, drawbacks feasibility are critically investigated. It has been found that Halpin-Tsai model with a percolation threshold enables the capture nonlinear effect particle reinforcement effectively DLP-based reinforced various particles. The paper further how AI techniques, such as machine learning Bayesian neural networks (BNNs), enhance prediction accuracy by extracting patterns from extensive datasets providing probabilistic predictions confidence intervals. aims advance better understanding material behaviour in additive manufacturing (AM). demonstrates exciting potential for performance enhancement composites, employing optimisation both selection parameters. also benefit combining empirical models AI-driven analytics optimise parameters, thereby advancing AM applications.

Язык: Английский

Процитировано

9

3D Printed Elastomers with Superior Stretchability and Mechanical Integrity by Parametric Optimization of Extrusion Process using Taguchi Method DOI Creative Commons
Abbas Bayati, Mina Ahmadi, Davood Rahmatabadi

и другие.

Materials Research Express, Год журнала: 2024, Номер 12(1), С. 015301 - 015301

Опубликована: Дек. 19, 2024

Abstract This study focused on a modified Fused Deposition Modeling (FDM) 3D printing method, specifically the direct pellet of propylene-based thermoplastic elastomer, Vistamaxx™ 6202, to address challenges like printability and weak mechanical properties. The main objective was optimizing parameters investigating their impact Taguchi method used design experiments, reducing required experiments maximize desired Three influential were chosen, each changing three levels. By employing number decreased from 27 full factorials 9. Regression models created through analysis variance (ANOVA) verified by additional experiments. Tensile tests performed according ASTM D638 standard. SEM imaging assess interlayer adhesion structural integrity. results demonstrated satisfactory integrity printed samples. Notably, elastomers achieved significant stretchability, reaching up 5921.3%. tensile strength 5.22 MPa, with modulus 1.7 MPa. effect parameter contribution percentage strength, elongation, elastic obtained analysis.

Язык: Английский

Процитировано

9

Numerical and Experimental Investigation of 3D Printed Tunable Stiffness Metamaterial with Real-Time Response Using Digital Light Processing Technology DOI Creative Commons
Mahdi Khajepour, Abbas Bayati,

Behrad Rezaee

и другие.

Journal of Materials Research and Technology, Год журнала: 2024, Номер unknown

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

7

An assessment of PLA/wood with PLA core sandwich multilayer component tensile strength under different 3D printing conditions DOI

John D. Kechagias,

Stephanos P. Zaoutsos

Journal of Manufacturing Processes, Год журнала: 2024, Номер 131, С. 1240 - 1249

Опубликована: Окт. 3, 2024

Язык: Английский

Процитировано

7

4D Printing Behavior of PETG/SEBS Blends: A Comparative Study of Reactive and Non-Reactive SEBS with Varied Styrene Content DOI
Marcela Cristine de Alencar Lira, Válmer Azevedo de Sousa Filho, Rafael Braga da Cunha

и другие.

Polymer, Год журнала: 2025, Номер unknown, С. 128059 - 128059

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Multi-objective optimization for shrinkage, mechanical, and shape-memory behavior in 4D printed polymer composites DOI Creative Commons

Garima Dixit,

Pulak M. Pandey

The International Journal of Advanced Manufacturing Technology, Год журнала: 2025, Номер unknown

Опубликована: Янв. 20, 2025

Язык: Английский

Процитировано

1

Temperature-responsive 4D printing with shape memory polymers: Advancing simulation with a viscoelastic constitutive model DOI
Jiarui Wang, Tong Mu,

Yuliang Xia

и другие.

Applied Materials Today, Год журнала: 2025, Номер 42, С. 102604 - 102604

Опубликована: Янв. 20, 2025

Язык: Английский

Процитировано

1