Materials Today Communications, Год журнала: 2024, Номер 40, С. 110091 - 110091
Опубликована: Авг. 1, 2024
Язык: Английский
Materials Today Communications, Год журнала: 2024, Номер 40, С. 110091 - 110091
Опубликована: Авг. 1, 2024
Язык: Английский
Aerospace, Год журнала: 2025, Номер 12(5), С. 390 - 390
Опубликована: Апрель 30, 2025
Lattice structures, with their unique design, offer properties like a programmable elastic modulus, an adjustable Poisson’s ratio, high specific strength, and large surface area, making them the key to achieving structural lightweighting, improving impact resistance, vibration suppression, maintaining thermal efficiency in aerospace field. However, functional prediction inverse design remain challenging due cross-scale effects, extensive spatial freedom, computational costs. Recent advancements AI have driven progress predicting lattice structure functionality. This paper begins introduction types, properties, applications. Then development process for performance-prediction methods of structures is summarized. The current applications methods, which are data-driven related material performance under conditions coupled multi-physical fields, analyzed, this analysis further extends relation summarizes application mechanical, energy absorption, acoustic, structures; elaborates on these optimization field; details relevant theory references field analysis. Finally, problems research demonstrated, future direction envisioned.
Язык: Английский
Процитировано
0Thin-Walled Structures, Год журнала: 2024, Номер 203, С. 112241 - 112241
Опубликована: Июль 18, 2024
Язык: Английский
Процитировано
2npj Computational Materials, Год журнала: 2024, Номер 10(1)
Опубликована: Окт. 8, 2024
Recent advancements in artificial intelligence (AI)-based design strategies for metamaterials have revolutionized the creation of customizable architectures spanning nano- to macro-scale dimensions. However, their increasing complexity poses challenges generating diverse metamaterials, hindering widespread adoption. Here, we introduce an innovative strategy three-dimensional graph through simple arithmetic operations within latent space. By leveraging carefully designed hidden representations disentangled space and diffusion processes, our method unravels complexity, with comprehensive understanding. This versatile methodology facilitates ranging from repetitive lattices functionally graded materials. We believe that this represents a foundational step advancing comprehension intricate space, offering potential establish unified model various traditional generative models realm metamaterials.
Язык: Английский
Процитировано
2Extreme Mechanics Letters, Год журнала: 2024, Номер 71, С. 102203 - 102203
Опубликована: Июль 14, 2024
Язык: Английский
Процитировано
1Materials Today Communications, Год журнала: 2024, Номер 40, С. 110091 - 110091
Опубликована: Авг. 1, 2024
Язык: Английский
Процитировано
1