Mechanics of Solids, Год журнала: 2024, Номер 59(8), С. 4085 - 4099
Опубликована: Дек. 1, 2024
Язык: Английский
Mechanics of Solids, Год журнала: 2024, Номер 59(8), С. 4085 - 4099
Опубликована: Дек. 1, 2024
Язык: Английский
Archives of Civil and Mechanical Engineering, Год журнала: 2025, Номер 25(2)
Опубликована: Фев. 20, 2025
Язык: Английский
Процитировано
0Advanced Materials Technologies, Год журнала: 2025, Номер unknown
Опубликована: Март 11, 2025
Abstract The imperative for lattice structures to excel in both sound absorption and mechanical properties arises from the increasing demand materials that offer multifunctional solutions. However, relationship between these two properties, on how design both, remains uncertain. Here, a perspective is presented interplay structures, focusing their mechanisms, limitations, recommendations. First, new term acoustical geometry introduced describe features influencing structures. Identified resonance's structural requirements, geometries are derived actual lattices’ features. Using this, links drawn. It found truss triply periodic minimal surface lattices lack freedom needed simultaneously customize as inherently tied same structure. For inherent capability of introducing pores strategically, this less intertwined plate lattices. Therefore, it advocated development hybrid with decouple paving way meta enable customizable multifunctionality.
Язык: Английский
Процитировано
0Materials & Design, Год журнала: 2025, Номер unknown, С. 113801 - 113801
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
0Applied Acoustics, Год журнала: 2025, Номер 235, С. 110681 - 110681
Опубликована: Март 20, 2025
Язык: Английский
Процитировано
0Materials & Design, Год журнала: 2025, Номер unknown, С. 113987 - 113987
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Materials, Год журнала: 2024, Номер 17(17), С. 4222 - 4222
Опубликована: Авг. 27, 2024
The yield strength and Young’s modulus of lattice structures are essential mechanical parameters that influence the utilization materials in aerospace medical fields. Currently, accurately determining often requires conduction a large number experiments for prediction validation purposes. To save time effort to predict material modulus, based on existing experimental data, finite element analysis is employed expand dataset. An artificial neural network algorithm then used establish relationship model between topology structure (the strength), which analyzed verified. Gibson–Ashby indicates different can be classified into two main deformation forms. obtain an deployed BCC-FCC structures, further optimized validated. Concurrently, disparate gives rise certain discrete form their dominant deformation, consequently affects prediction. In conclusion, using networks feasible approach contribute development
Язык: Английский
Процитировано
1Mechanics of Solids, Год журнала: 2024, Номер 59(8), С. 4085 - 4099
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0