Опубликована: Янв. 1, 2024
Язык: Английский
Опубликована: Янв. 1, 2024
Язык: Английский
Nano-Structures & Nano-Objects, Год журнала: 2024, Номер 39, С. 101231 - 101231
Опубликована: Июнь 17, 2024
Язык: Английский
Процитировано
25Colloids and Surfaces A Physicochemical and Engineering Aspects, Год журнала: 2025, Номер 713, С. 136497 - 136497
Опубликована: Фев. 24, 2025
Язык: Английский
Процитировано
1Crystals, Год журнала: 2024, Номер 14(5), С. 447 - 447
Опубликована: Май 8, 2024
Hybrid material-derived adsorbents have shown a great applicable efficiency in various fields, including industrial uses and environmental remediation. Herein, zinc oxide nanoparticle modified with carbon (ZnO-C) was fabricated utilized for wastewater treatment through the adsorption of Zn(II), Cd(II), Co(II), Mn(II). The surface structural characteristics were examined using TEM, SEM, XRD, FTIR spectroscopy, EDS, BET area. Kinetics equilibrium investigations applied to optimize adsorptive removal Mn(II) onto ZnO-C. results indicated that formation ZnO-C crystalline sphere-like granules nano-size between 16 68 nm together matrix. In addition, spherical gathered form clusters. spectroscopy rich OH groups ZnO. capacity 215, 213, 206, 231 mg/g Mn(II), respectively, at optimal conditions pH 5 6, contact time 180 min, an adsorbent dose 0.1 g/L. data modeling uptake showed agreement assumption pseudo-second-order kinetic model Freundlich isotherm, suggesting fast rate multilayered mechanism. achieved prepared more effective compared ZnO, carbon, Fe3O4, Fe3O4-C. Real samples applied, valley water, wastewater, rain evaluated Fe3O4-C efficiency.
Язык: Английский
Процитировано
4Environmental Nanotechnology Monitoring & Management, Год журнала: 2024, Номер 21, С. 100943 - 100943
Опубликована: Март 25, 2024
Язык: Английский
Процитировано
3Case Studies in Thermal Engineering, Год журнала: 2024, Номер 59, С. 104501 - 104501
Опубликована: Май 8, 2024
This paper presents a comprehensive analysis of three predictive models, namely Multi-Layer Perceptron (MLP), LASSO, and Extreme Gradient Boosting (XGB) for estimating concentration (C) substance in given dataset. Adsorption separation was considered water treatment, the models were employed tracking variations solute process. With x(m) y(m) as input variables which are location, measured mol/m³ output, dataset comprises more than 19,000 data points. The Fireworks Algorithm (FWA) to perform hyper-parameter optimization models. Different metrics utilized gauge proficiency each model, such R2 (coefficient determination) both training testing datasets, RMSE, MAE. Results indicate that MLP model obtained highest score terms R2, with values 0.99751 0.99756 data, suggesting excellent accuracy. also demonstrated lowest error rates, an RMSE 1.3937E+00 MAE 8.81875E-01. results revealed machine learning well capable predicting adsorption process when combined mass transfer modeling great accuracy can be obtained.
Язык: Английский
Процитировано
3Elsevier eBooks, Год журнала: 2024, Номер unknown, С. 303 - 321
Опубликована: Дек. 4, 2024
Язык: Английский
Процитировано
3Chemical Papers, Год журнала: 2025, Номер unknown
Опубликована: Март 18, 2025
Язык: Английский
Процитировано
0Journal of Water Process Engineering, Год журнала: 2025, Номер 72, С. 107566 - 107566
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Chemical Engineering Journal Advances, Год журнала: 2025, Номер unknown, С. 100761 - 100761
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Nanotechnology in the life sciences, Год журнала: 2025, Номер unknown, С. 245 - 263
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0