
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Окт. 14, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Окт. 14, 2024
Язык: Английский
The international archives of the photogrammetry, remote sensing and spatial information sciences/International archives of the photogrammetry, remote sensing and spatial information sciences, Год журнала: 2024, Номер XLVIII-1-2024, С. 637 - 642
Опубликована: Май 10, 2024
Abstract. Environmental protection and sustainable natural resource management are being recognised worldwide as essential goals to safe guard human health well-being. Riparian zones, that face the highest decline in freshwater biodiversity, of prime conservation priority because they for regulating climate, preserving aquatic-terrestrial maintaining ground water recharge restoring rivers. In today's fast-paced data-driven environment, artificial intelligence (AI) is precise answer a wide range problems including biodiversity wildlife management. Leveraging advancements like Uncrewed/Unmanned Aerial Vehicles (UAVs) AI has resulted innovative strides conservation. This study utilised UAV imagery record high-resolution data aquatic habitat species along Ganga River employed deep learning algorithms analyse data. Through extensive field surveys Hastinapur Wildlife Sanctuary, 7,025 photos representing variety environments, 20,000 annotated samples animals such turtles gharials were generated. Vision based computing capabilities pattern recognition model developed identify these species. To enrich enhance dataset model, we used different image pre-processing techniques. Slight rotation (±5 degrees), minor cropping (up 10%), adjustments brightness, saturation, shear (±15%) applied. Controlled blur 0.5%) exposure modifications (±5%) also implemented on improve accuracy. Three Convolutional Neural Network (CNN) architectures, single-stage detectors named YOLO v7, v8, Roboflow 3.0, detecting select Results show v8 excels, achieving mean average precision (mAP) 98.8% gharial 92.2% turtle detection, with rapid detection time 0.308 seconds per frame at 3200 × resolution. Additionally, our demonstrates real-time capability through sampling techniques UAVs. methodology provides promising technique collect scientific IUCN red listed critically endangered gharials, allowing monitoring, real counting minimal intrusion. conclusion, fusion UAVs promises revolutionize aiding decision-making.
Язык: Английский
Процитировано
3Environmental Monitoring and Assessment, Год журнала: 2025, Номер 197(2)
Опубликована: Янв. 7, 2025
Язык: Английский
Процитировано
0Ecological Informatics, Год журнала: 2024, Номер unknown, С. 102913 - 102913
Опубликована: Ноя. 1, 2024
Язык: Английский
Процитировано
1Measurement, Год журнала: 2024, Номер 239, С. 115340 - 115340
Опубликована: Июль 17, 2024
Язык: Английский
Процитировано
0Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Окт. 14, 2024
Язык: Английский
Процитировано
0