A novel edge intelligence application model with lightweight network and antinoise ability for bearing fault diagnosis DOI
L. Liu, Fan Zhang, L. Liu

и другие.

Structural Health Monitoring, Год журнала: 2025, Номер unknown

Опубликована: Апрель 27, 2025

With the rapid development of deep learning, edge intelligence applications (EIA) have achieved numerous results. However, redundant parameters model and strong noise pollution pose challenges to EIA for bearing fault diagnosis. To solve these challenges, a with lightweight network antinoise ability was proposed First, novel pluggable channel slimming module designed make lightweight, which can effectively reduce computation model. Second, an learning is proposed, has discriminator enhance network’s feature extraction capability through supervised learning. Finally, adaptive input generalization model, adaptively adjust information under different application environments improve stability accuracy The performance verified test rig experiments on two types train axle box bearings datasets, indicated achieves more than 89% diagnostic at −10 dB.

Язык: Английский

Prediction of bearing remaining useful life based on a two-stage updated digital twin DOI
Deqiang He, Jiayang Zhao, Zhenzhen Jin

и другие.

Advanced Engineering Informatics, Год журнала: 2025, Номер 65, С. 103123 - 103123

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

23

A zero-shot model for diagnosing unknown composite faults in train bearings based on label feature vector generated fault features DOI
Deqiang He, Yuan Xu, Zhenzhen Jin

и другие.

Applied Acoustics, Год журнала: 2025, Номер 232, С. 110563 - 110563

Опубликована: Фев. 3, 2025

Язык: Английский

Процитировано

7

DCAGGCN: A novel method for remaining useful life prediction of bearings DOI
Deqiang He, Jiayang Zhao, Zhenzhen Jin

и другие.

Reliability Engineering & System Safety, Год журнала: 2025, Номер unknown, С. 110978 - 110978

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

3

Remaining useful life prediction of rolling bearing based on multi-region hypergraph self-attention network DOI
Jianhua Zhong, Haifeng Jiang, Kairong Gu

и другие.

Mechanical Systems and Signal Processing, Год журнала: 2025, Номер 225, С. 112331 - 112331

Опубликована: Янв. 13, 2025

Язык: Английский

Процитировано

2

Multi-sensor bearing fault diagnosis based on evidential neural network with sensor weights and reliability DOI
Peng Han, Zhiqiu Huang, Weiwei Li

и другие.

Expert Systems with Applications, Год журнала: 2025, Номер unknown, С. 126533 - 126533

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

1

Unlocking the power of knowledge for few-shot fault diagnosis: A review from a knowledge perspective DOI
Pei Ling Lai, Fan Zhang, Tianrui Li

и другие.

Information Sciences, Год журнала: 2025, Номер unknown, С. 121996 - 121996

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

A novel meta-learning network with adversarial domain-adaptation and attention mechanism for cross-domain for train bearing fault diagnosis DOI
Hao Zhong, Deqiang He, Zexian Wei

и другие.

Measurement Science and Technology, Год журнала: 2024, Номер 35(12), С. 125109 - 125109

Опубликована: Авг. 27, 2024

Abstract Traction motor bearings, serving as a critical component in trains, have significant impact on ensuring the safety of train operations. However, there is scarcity sample data for bearing failures during operations, and complex variable operating conditions bearings result differences domain distribution. Traditional cross-domain fault diagnosis methods are no longer adequate addressing faults. Therefore, this study proposes novel adversarial domain-adaptation meta-learning network (NADMN) purpose diagnosing Firstly, deep convolutional neural proposed, which enhances model’s feature extraction capability by incorporating attention mechanisms. Moreover, employing adaptation learning strategy, it effectively extracts domain-invariant features from both source target domains, thereby achieving generalization across different domains. Three experiments carried out, superiority NADMN proved charts, confusion matrix visualization techniques. Compared with other five methods, showed obvious advantages diagnostic scenarios characterized changes

Язык: Английский

Процитировано

6

Surface defect detection of stay cable sheath based on autoencoder and auxiliary anomaly location DOI

Qi Liu,

Deqiang He,

Yixin Shen

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102759 - 102759

Опубликована: Авг. 16, 2024

Язык: Английский

Процитировано

4

Welding defect detection based on phased array images and two-stage segmentation strategy DOI
Yan Chen, Deqiang He,

Suiqiu He

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 62, С. 102879 - 102879

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

3

Imbalance Fault Detection of Marine Current Turbine Based on GLRT Detector DOI Creative Commons

Milu Zhang,

Chen Jutao,

Liu Yang

и другие.

Sensors, Год журнала: 2025, Номер 25(3), С. 874 - 874

Опубликована: Янв. 31, 2025

Marine Current Turbines (MCTs) play a critical role in converting the kinetic energy of water into electricity. However, due to influence marine organisms, current equipment often experiences imbalance faults. Additionally, affected by underwater environment, fault characteristics are submerged disturbances such as waves and turbulence. Against background above problems, this article proposes detection strategy based on Generalized Likelihood Ratio Test (GLRT) detector. Firstly, simulation model MCT system is established obtain prior knowledge. Then, combining Matrix Pencil Method (MPM) for calculating instantaneous frequency, metrics selected proposed GLRT At end, turbine experimental platform established, which can simulate imbalanced faults environmental disturbances, helping verify effectiveness strategy. The results indicate that detect complex environments. Imbalance main manifestation blade attachments. Thus, it very meaningful accomplish order maintain working system.

Язык: Английский

Процитировано

0