Detection of Diffusion Interlayers in Dissimilar Welded Joints in Processing Pipelines by Acoustic Emission Method DOI Creative Commons

V. A. Barat,

A. Yu. Marchenkov,

V. V. Bardakov

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(22), С. 10546 - 10546

Опубликована: Ноя. 15, 2024

The paper considers the neural network application to detect microstructure defects in dissimilar welded joints using acoustic emission (AE) method. peculiarity of proposed approach is that defect detection carried out taking into account a priori information about properties AE source and waveguide parameters testing structure. Industrial process pipelines with were studied as object, diffusion interlayers formed fusion zones considered defects. simulation signals was hybrid method: signal waveform determined based on finite element model, while amplitudes hits physical experiment mechanical joints. Measurement data from industrial used noise realizations. As result, sample realistic signal-to-noise ratio. method allows for more accurate determination waveform, spectrum, amplitude signal. Greater certainty useful achieving reliable classification result. When backpropagation network, percentage correct than 90% obtained set which ratio less (−5 dB) cases.

Язык: Английский

A comprehensive survey of golden jacal optimization and its applications DOI
Mehdi Hosseinzadeh, Jawad Tanveer, Amir Masoud Rahmani

и другие.

Computer Science Review, Год журнала: 2025, Номер 56, С. 100733 - 100733

Опубликована: Фев. 11, 2025

Язык: Английский

Процитировано

0

Optimized modal decomposition techniques for robust leakage detection in noisy environments: A comparative study DOI
Jialin Cui, Xianqiang Qu, Chunwang Lv

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117390 - 117390

Опубликована: Март 1, 2025

Процитировано

0

Study on noise reduction method for bridge temperature signal using adaptive parameter selection and improved wavelet threshold function DOI

Zhongchu Tian,

Jiangyan Wu,

Zujun Zhang

и другие.

Measurement, Год журнала: 2025, Номер unknown, С. 117683 - 117683

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0

Detection of Diffusion Interlayers in Dissimilar Welded Joints in Processing Pipelines by Acoustic Emission Method DOI Creative Commons

V. A. Barat,

A. Yu. Marchenkov,

V. V. Bardakov

и другие.

Applied Sciences, Год журнала: 2024, Номер 14(22), С. 10546 - 10546

Опубликована: Ноя. 15, 2024

The paper considers the neural network application to detect microstructure defects in dissimilar welded joints using acoustic emission (AE) method. peculiarity of proposed approach is that defect detection carried out taking into account a priori information about properties AE source and waveguide parameters testing structure. Industrial process pipelines with were studied as object, diffusion interlayers formed fusion zones considered defects. simulation signals was hybrid method: signal waveform determined based on finite element model, while amplitudes hits physical experiment mechanical joints. Measurement data from industrial used noise realizations. As result, sample realistic signal-to-noise ratio. method allows for more accurate determination waveform, spectrum, amplitude signal. Greater certainty useful achieving reliable classification result. When backpropagation network, percentage correct than 90% obtained set which ratio less (−5 dB) cases.

Язык: Английский

Процитировано

0