CXR-LLaVA: a multimodal large language model for interpreting chest X-ray images DOI Creative Commons
Seowoo Lee,

Jiwon Youn,

Hyungjin Kim

и другие.

European Radiology, Год журнала: 2025, Номер unknown

Опубликована: Янв. 15, 2025

This study aimed to develop an open-source multimodal large language model (CXR-LLaVA) for interpreting chest X-ray images (CXRs), leveraging recent advances in models (LLMs) potentially replicate the image interpretation skills of human radiologists. For training, we collected 592,580 publicly available CXRs, which 374,881 had labels certain radiographic abnormalities (Dataset 1) and 217,699 provided free-text radiology reports 2). After pre-training a vision transformer with Dataset 1, integrated it LLM influenced by LLaVA network. Then, was fine-tuned, primarily using 2. The model's diagnostic performance major pathological findings evaluated, along acceptability radiologic radiologists, gauge its potential autonomous reporting. demonstrated impressive test sets, achieving average F1 score 0.81 six MIMIC internal set 0.56 external set. scores surpassed those GPT-4-vision Gemini-Pro-Vision both sets. In radiologist evaluations set, achieved 72.7% success rate reporting, slightly below 84.0% ground truth reports. highlights significant LLMs CXR interpretation, while also acknowledging limitations. Despite these challenges, believe that making our will catalyze further research, expanding effectiveness applicability various clinical contexts. Question How can be adapted interpret X-rays generate reports? Findings developed CXR-LLaVA effectively detects generates higher accuracy compared general-purpose models. Clinical relevance demonstrates support radiologists autonomously generating reports, reducing workloads improving efficiency.

Язык: Английский

Advances in medical image analysis with vision Transformers: A comprehensive review DOI
Reza Azad, Amirhossein Kazerouni, Moein Heidari

и другие.

Medical Image Analysis, Год журнала: 2023, Номер 91, С. 103000 - 103000

Опубликована: Окт. 19, 2023

Язык: Английский

Процитировано

141

Dense Convolutional Network and Its Application in Medical Image Analysis DOI Creative Commons
Tao Zhou, Xinyu Ye, Huiling Lu

и другие.

BioMed Research International, Год журнала: 2022, Номер 2022, С. 1 - 22

Опубликована: Апрель 25, 2022

Dense convolutional network (DenseNet) is a hot topic in deep learning research recent years, which has good applications medical image analysis. In this paper, DenseNet summarized from the following aspects. First, basic principle of introduced; second, development and analyzed five aspects: broaden structure, lightweight dense unit, connection mode, attention mechanism; finally, application field analysis three pattern recognition, segmentation, object detection. The structures are systematically certain positive significance for DenseNet.

Язык: Английский

Процитировано

112

Cov-Net: A computer-aided diagnosis method for recognizing COVID-19 from chest X-ray images via machine vision DOI Open Access
Han Li, Nianyin Zeng, Peishu Wu

и другие.

Expert Systems with Applications, Год журнала: 2022, Номер 207, С. 118029 - 118029

Опубликована: Июль 5, 2022

Язык: Английский

Процитировано

108

Recent progress in transformer-based medical image analysis DOI
Zhaoshan Liu, Qiujie Lv, Ziduo Yang

и другие.

Computers in Biology and Medicine, Год журнала: 2023, Номер 164, С. 107268 - 107268

Опубликована: Июль 20, 2023

Язык: Английский

Процитировано

66

Co-design of Human-centered, Explainable AI for Clinical Decision Support DOI Open Access
Cecilia Panigutti, Andrea Beretta, Daniele Fadda

и другие.

ACM Transactions on Interactive Intelligent Systems, Год журнала: 2023, Номер 13(4), С. 1 - 35

Опубликована: Март 14, 2023

eXplainable AI (XAI) involves two intertwined but separate challenges: the development of techniques to extract explanations from black-box models and way such are presented users, i.e., explanation user interface. Despite its importance, second aspect has received limited attention so far in literature. Effective interfaces fundamental for allowing human decision-makers take advantage oversee high-risk systems effectively. Following an iterative design approach, we present first cycle prototyping-testing-redesigning explainable technique interface clinical Decision Support Systems (DSS). We XAI that meets technical requirements healthcare domain: sequential, ontology-linked patient data, multi-label classification tasks. demonstrate applicability explain a DSS, prototype Next, test with providers collect their feedback two-fold outcome: First, obtain evidence increase users’ trust system, second, useful insights on perceived deficiencies interaction can re-design better, more human-centered

Язык: Английский

Процитировано

48

Multi-task vision transformer using low-level chest X-ray feature corpus for COVID-19 diagnosis and severity quantification DOI Open Access
Sang Joon Park,

Gwanghyun Kim,

Yujin Oh

и другие.

Medical Image Analysis, Год журнала: 2021, Номер 75, С. 102299 - 102299

Опубликована: Ноя. 4, 2021

Язык: Английский

Процитировано

93

Training Strategies for Radiology Deep Learning Models in Data-limited Scenarios DOI
Sema Candemir, Xuan V. Nguyen, Les Folio

и другие.

Radiology Artificial Intelligence, Год журнала: 2021, Номер 3(6)

Опубликована: Окт. 7, 2021

Data-driven approaches have great potential to shape future practices in radiology. The most straightforward strategy obtain clinically accurate models is use large, well-curated and annotated datasets. However, patient privacy constraints, tedious annotation processes, the limited availability of radiologists pose challenges building such This review details model training strategies scenarios with data, insufficiently labeled and/or expert resources. discusses enlarge data sample, decrease time burden manual supervised labeling, adjust neural network architecture improve performance, apply semisupervised approaches, leverage efficiencies from pretrained models. Keywords: Computer-aided Detection/Diagnosis, Transfer Learning, Limited Annotated Data, Augmentation, Synthetic Semisupervised Federated Few-Shot Class Imbalance

Язык: Английский

Процитировано

68

A narrative review on characterization of acute respiratory distress syndrome in COVID-19-infected lungs using artificial intelligence DOI Open Access
Jasjit S. Suri, Sushant Agarwal, Suneet Gupta

и другие.

Computers in Biology and Medicine, Год журнала: 2021, Номер 130, С. 104210 - 104210

Опубликована: Янв. 18, 2021

Язык: Английский

Процитировано

64

Comprehensive Survey of Using Machine Learning in the COVID-19 Pandemic DOI Creative Commons
Nora El-Rashidy,

Samir Abdelrazik,

Tamer Abuhmed

и другие.

Diagnostics, Год журнала: 2021, Номер 11(7), С. 1155 - 1155

Опубликована: Июнь 24, 2021

Since December 2019, the global health population has faced rapid spreading of coronavirus disease (COVID-19). With incremental acceleration number infected cases, World Health Organization (WHO) reported COVID-19 as an epidemic that puts a heavy burden on healthcare sectors in almost every country. The potential artificial intelligence (AI) this context is difficult to ignore. AI companies have been racing develop innovative tools contribute arm world against pandemic and minimize disruption it may cause. main objective study survey decisive role technology used fight pandemic. Five significant applications for were found, including (1) diagnosis using various data types (e.g., images, sound, text); (2) estimation possible future spread based current confirmed cases; (3) association between infection patient characteristics; (4) vaccine development drug interaction; (5) supporting applications. This also introduces comparison datasets. Based limitations literature, review highlights open research challenges could inspire application COVID-19.

Язык: Английский

Процитировано

57

Biphasic majority voting-based comparative COVID-19 diagnosis using chest X-ray images DOI Open Access
Kubilay Muhammed Sünnetci, Ahmet Alkan

Expert Systems with Applications, Год журнала: 2022, Номер 216, С. 119430 - 119430

Опубликована: Дек. 21, 2022

Язык: Английский

Процитировано

54