Computers in Biology and Medicine, Год журнала: 2023, Номер 157, С. 106748 - 106748
Опубликована: Март 11, 2023
Язык: Английский
Computers in Biology and Medicine, Год журнала: 2023, Номер 157, С. 106748 - 106748
Опубликована: Март 11, 2023
Язык: Английский
Medical Image Analysis, Год журнала: 2025, Номер 101, С. 103447 - 103447
Опубликована: Янв. 2, 2025
Язык: Английский
Процитировано
4iScience, Год журнала: 2022, Номер 25(11), С. 105331 - 105331
Опубликована: Окт. 13, 2022
Synthetic data generation is the process of using machine learning methods to train a model that captures patterns in real dataset. Then new or synthetic can be generated from trained model. The does not have one-to-one mapping original patients, and therefore has potential privacy preserving properties. There growing interest application across health life sciences, but fully realize benefits, further education, research, policy innovation required. This article summarizes opportunities challenges SDG for data, provides directions how this technology leveraged accelerate access secondary purposes.
Язык: Английский
Процитировано
71Clinical Oncology, Год журнала: 2023, Номер 35(6), С. 354 - 369
Опубликована: Янв. 31, 2023
Auto-contouring could revolutionise future planning of radiotherapy treatment. The lack consensus on how to assess and validate auto-contouring systems currently limits clinical use. This review formally quantifies the assessment metrics used in studies published during one calendar year assesses need for standardised practice. A PubMed literature search was undertaken papers evaluating 2021. Papers were assessed types metric methodology generate ground-truth comparators. Our identified 212 studies, which 117 met criteria review. Geometric 116 (99.1%). includes Dice Similarity Coefficient 113 (96.6%) studies. Clinically relevant metrics, such as qualitative, dosimetric time-saving less frequently 22 (18.8%), 27 (23.1%) 18 (15.4%) respectively. There heterogeneity within each category metric. Over 90 different names geometric measures used. Methods qualitative all but two papers. Variation existed methods plans assessment. Consideration editing time only given 11 (9.4%) single manual contour a comparator 65 (55.6%) Only 31 (26.5%) compared auto-contours usual inter- and/or intra-observer variation. In conclusion, significant variation exists research accuracy automatically generated contours. are most popular, however their utility is unknown. perform Considering stages system implementation may provide framework decide appropriate metrics. analysis supports auto-contouring.
Язык: Английский
Процитировано
42Lecture notes in computer science, Год журнала: 2023, Номер unknown, С. 1 - 30
Опубликована: Янв. 1, 2023
Язык: Английский
Процитировано
42The Lancet Digital Health, Год журнала: 2023, Номер 5(6), С. e360 - e369
Опубликована: Апрель 21, 2023
Язык: Английский
Процитировано
38Research Square (Research Square), Год журнала: 2023, Номер unknown
Опубликована: Июнь 14, 2023
Язык: Английский
Процитировано
32Polish Journal of Radiology, Год журнала: 2023, Номер 88, С. 365 - 370
Опубликована: Авг. 14, 2023
Accurately segmenting head and neck cancer (HNC) tumors in medical images is crucial for effective treatment planning. However, current methods HNC segmentation are limited their accuracy efficiency. The present study aimed to design a model three-dimensional (3D) positron emission tomography (PET) using Non-Local Means (NLM) morphological operations.The proposed was tested data from the HECKTOR challenge public dataset, which included 408 patient with tumors. NLM utilized image noise reduction preservation of critical information. Following pre-processing, operations were used assess similarity intensity edge information within images. Dice score, Intersection Over Union (IoU), evaluate manual predicted results.The achieved an average score 81.47 ± 3.15, IoU 80 4.5, 94.03 4.44, demonstrating its effectiveness PET images.The algorithm provides capability produce patient-specific tumor without interaction, addressing limitations segmentation. has potential improve planning aid development personalized medicine. Additionally, this can be extended effectively segment other organs annotated
Язык: Английский
Процитировано
32Physics in Medicine and Biology, Год журнала: 2023, Номер 68(5), С. 055013 - 055013
Опубликована: Фев. 7, 2023
Tumor segmentation is a fundamental step for radiotherapy treatment planning. To define an accurate of the primary tumor (GTVp) oropharyngeal cancer patients (OPC), simultaneous assessment different image modalities needed, and each volume explored slice-by-slice from orientations. Moreover, manual fixed boundary neglects spatial uncertainty known to occur in delineation. This study proposes novel automatic deep learning (DL) model assist radiation oncologists adaptive GTVp on registered FDG PET/CT images. We included 138 OPC treated with (chemo)radiation our institute. Our DL framework exploits both inter intra-slice context. Sequences 3 consecutive 2D slices concatenated images contours were used as input. A 3-fold cross validation was performed three times, training sequences extracted Axial (A), Sagittal (S), Coronal (C) plane 113 patients. Since contain overlapping slices, slice resulted outcome predictions that averaged. In A, S, C planes, output shows areas probabilities predicting tumor. The performance models assessed 25 at probability thresholds using mean Dice Score Coefficient (DSC). Predictions closest ground truth threshold 0.9 (DSC 0.70 0.77 0.80 plane). promising results proposed show maps could guide segmentation.
Язык: Английский
Процитировано
22Computerized Medical Imaging and Graphics, Год журнала: 2023, Номер 110, С. 102308 - 102308
Опубликована: Окт. 26, 2023
Язык: Английский
Процитировано
22International Journal of Medical Informatics, Год журнала: 2023, Номер 171, С. 104984 - 104984
Опубликована: Янв. 5, 2023
Язык: Английский
Процитировано
20