Information Fusion, Год журнала: 2024, Номер unknown, С. 102887 - 102887
Опубликована: Дек. 1, 2024
Язык: Английский
Information Fusion, Год журнала: 2024, Номер unknown, С. 102887 - 102887
Опубликована: Дек. 1, 2024
Язык: Английский
Medical Image Analysis, Год журнала: 2025, Номер 103, С. 103570 - 103570
Опубликована: Апрель 9, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 10, 2025
Язык: Английский
Процитировано
0IEEE Transactions on Neural Systems and Rehabilitation Engineering, Год журнала: 2024, Номер 32, С. 3084 - 3094
Опубликована: Янв. 1, 2024
Brain networks/graphs have been widely recognized as powerful and efficient tools for identifying neurological disorders. In recent years, various graph neural network models developed to automatically extract features from brain networks. However, a key limitation of these is that the inputs, namely networks/graphs, are constructed using predefined statistical metrics (e.g., Pearson correlation) not learnable. The lack learnability restricts flexibility approaches. While statistically-specific networks can be highly effective in recognizing certain diseases, their performance may exhibit robustness when applied other types To address this issue, we propose novel module called Structure Inference (termed BSI), which seamlessly integrated with multiple downstream tasks within unified framework, enabling end-to-end training. It flexible learn most beneficial underlying structures directly specific tasks. proposed method achieves classification accuracies 74.83% 79.18% on two publicly available datasets, respectively. This suggests an improvement at least 3% over best-performing existing methods both addition its excellent performance, interpretable, results generally consistent previous findings.
Язык: Английский
Процитировано
2Expert Systems with Applications, Год журнала: 2024, Номер 265, С. 125922 - 125922
Опубликована: Дек. 7, 2024
Язык: Английский
Процитировано
0Information Fusion, Год журнала: 2024, Номер unknown, С. 102887 - 102887
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0