Neurocomputing, Год журнала: 2024, Номер unknown, С. 129262 - 129262
Опубликована: Дек. 1, 2024
Язык: Английский
Neurocomputing, Год журнала: 2024, Номер unknown, С. 129262 - 129262
Опубликована: Дек. 1, 2024
Язык: Английский
Neurocomputing, Год журнала: 2025, Номер 622, С. 129326 - 129326
Опубликована: Янв. 6, 2025
Язык: Английский
Процитировано
0Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер unknown, С. 130217 - 130217
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0Journal of Imaging, Год журнала: 2025, Номер 11(5), С. 157 - 157
Опубликована: Май 16, 2025
Hematology plays a critical role in diagnosing and managing wide range of blood-related disorders. The manual interpretation blood smear images, however, is time-consuming highly dependent on expert availability. Moreover, it particularly challenging remote resource-limited settings. In this study, we present an AI-driven system for automated cell anomaly detection, combining computer vision machine learning models to support efficient diagnostics hematology telehealth contexts. Our architecture integrates segmentation (YOLOv11), classification (ResNet50), transfer learning, zero-shot identify categorize types abnormalities from images. Evaluated real annotated samples, the achieved high performance, with precision 0.98, recall 0.99, F1 score 0.98. These results highlight potential proposed enhance diagnostic capabilities clinical decision making underserved regions.
Язык: Английский
Процитировано
0Frontiers in Medicine, Год журнала: 2024, Номер 11
Опубликована: Май 22, 2024
Retinal vessels play a pivotal role as biomarkers in the detection of retinal diseases, including hypertensive retinopathy. The manual identification these is both resource-intensive and time-consuming. fidelity vessel segmentation automated methods directly depends on fundus images' quality. In instances sub-optimal image quality, applying deep learning-based methodologies emerges more effective approach for precise segmentation. We propose heterogeneous neural network combining benefit local semantic information extraction convolutional long-range spatial features mining transformer structures. Such cross-attention structure boosts model's ability to tackle structures images. Experiments four publicly available datasets demonstrate our superior performance big potential retinopathy quantification.
Язык: Английский
Процитировано
2Neurocomputing, Год журнала: 2024, Номер unknown, С. 129262 - 129262
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
0