A multi-modal fusion model with enhanced feature representation for chronic kidney disease progression prediction DOI Creative Commons

Yixuan Qiao,

Hong Zhou, Yang Liu

и другие.

Briefings in Bioinformatics, Год журнала: 2024, Номер 26(1)

Опубликована: Ноя. 22, 2024

Abstract Artificial intelligence (AI)-based multi-modal fusion algorithms are pivotal in emulating clinical practice by integrating data from diverse sources. However, most of the existing models focus on designing new modal methods, ignoring critical role feature representation. Enhancing representativeness can address noise caused heterogeneity at source, enabling high performance even with small datasets and simple architectures. Here, we introduce DeepOmix-FLEX (Fusion Learning Enhanced representation for X-modal or FLEX short), a model that integrates data, proteomic metabolomic pathology images across different scales modalities, advanced learning contains Feature Encoding Trainer structure train encoding, thus achieving inter-feature inter-modal. achieves mean AUC 0.887 prediction chronic kidney disease progression an internal dataset, exceeding 0.727 using conventional variables. Following external validation interpretability analyses, our demonstrated favorable generalizability validity, as well ability to exploit markers. In summary, highlights potential AI integrate optimize allocation healthcare resources through accurate prediction.

Язык: Английский

Baseline comorbidity of cardiovascular-kidney-metabolic syndrome increases the risk of adverse clinical outcomes in patients with chronic kidney disease DOI Creative Commons

Jiali Meng,

Wen Li,

Wenjing Fu

и другие.

Frontiers in Endocrinology, Год журнала: 2025, Номер 16

Опубликована: Апрель 16, 2025

Introduction Our study aims to analyze the relationship between different stage of Cardiovascular-Kidney-Metabolic (CKM) Syndrome in Chronic Kidney Disease (CKD) patients and risk progression all-caused mortality or end-stage renal disease (ESRD). Methods results A retrospective cohort was performed by collecting baseline data CKD patients. All participants were followed throughout course study. Cox proportional hazards analysis Fine-Gray subdistribution model prognostic value CKM stages on adverse clinical outcomes (all-caused ESRD) these 1,358 finally completed follow-up. Among them, 1,233 alive, 125 had died; 163 progressed ESRD. Baseline 3 (OR=3.906, 95% CI=0.988-16.320, p=0.048) 4 (OR=5.728, CI=1.329-24.698, p=0.019) remain independent factors for all-cause patients, while 2b (OR=2.739, CI=1.157-6.486, p=0.022) identified as having an factor ESRD adjusting confounding factors. Conclusion research demonstrated that a high-risk can predict including

Язык: Английский

Процитировано

0

Cardiovascular–Kidney–Metabolic Syndrome: A New Paradigm in Clinical Medicine or Going Back to Basics? DOI Open Access

Victoria Mutruc,

Cristina Bologa, Victoriţa Şorodoc

и другие.

Journal of Clinical Medicine, Год журнала: 2025, Номер 14(8), С. 2833 - 2833

Опубликована: Апрель 19, 2025

Cardiovascular, renal, and metabolic diseases are pathophysiologically interdependent, posing a significant global health challenge being associated with substantial increase in morbidity mortality. In 2023, the American Heart Association (AHA) defined this complex network of interconnected conditions as cardiovascular–kidney–metabolic (CKM) syndrome. This syndrome is based on common pathophysiological mechanisms, including chronic inflammation, oxidative stress, hyperglycemia insulin resistance, activation renin–angiotensin–aldosterone system (RAAS), neurohormonal dysfunction, which trigger vicious cycle where impairment one organ contributes to progressive deterioration others. An integrated approach these conditions, rather than treating them separate entities, supports holistic management strategy that helps reduce burden public improve patients’ quality life. Existing focuses lifestyle modification, glycemic lipid control, use nephroprotective cardioprotective therapies. narrative review aims synthesize contextualize existing information interactions between systems diagnostic approaches, well provide an overview available therapeutic options.

Язык: Английский

Процитировано

0

Management of patients with the cardio renal liver metabolic syndrome: The need for a multidisciplinary approach in research, education and practice DOI
Angeliki M. Angelidi, Despina Sanoudou, Michael A. Hill

и другие.

Metabolism, Год журнала: 2024, Номер 159, С. 155997 - 155997

Опубликована: Авг. 12, 2024

Язык: Английский

Процитировано

3

GDF-15 improves the predictive capacity of Steatotic liver disease non-invasive tests for incident morbidity and mortality risk for cardio-renal-metabolic diseases and malignancies DOI Creative Commons
Michail Kokkorakis, Pytrik Folkertsma, José Castela Forte

и другие.

Metabolism, Год журнала: 2024, Номер unknown, С. 156047 - 156047

Опубликована: Окт. 1, 2024

Язык: Английский

Процитировано

2

Monitoring the liver as a part of the cardio-renal-metabolic continuum – What is cooking and burning with non-invasive tests and treatment options? DOI
Špela Volčanšek, Andrej Janež, Manfredi Rizzo

и другие.

Journal of Diabetes and its Complications, Год журнала: 2024, Номер unknown, С. 108875 - 108875

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

0

Epidemiological characteristics, complications of haemodialysis patients with end-stage diabetic nephropathy in a tertiary hospital in Guizhou, China: a cross-sectional survey DOI Creative Commons
Xiuping Xu,

Nengyuan Yang,

Jingjing Da

и другие.

Frontiers in Medicine, Год журнала: 2024, Номер 11

Опубликована: Окт. 18, 2024

In China, diabetes mellitus (DM) significantly contributes to end-stage renal disease (ESRD), necessitating treatments like hemodialysis. This study investigates hemodialysis outcomes in diabetic nephropathy patients Guizhou Province, aiming enhance care for this high-risk group.

Язык: Английский

Процитировано

0

The role of IL-1 family cytokines in diabetic cardiomyopathy DOI
Qi Wu,

Yan Zeng,

Kang Geng

и другие.

Metabolism, Год журнала: 2024, Номер unknown, С. 156083 - 156083

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

0

CKM: A New Approach to Managing Metabolic Comorbidities in MASLD? DOI
Tianyuan Yang,

Tong Bu,

Bingqing Yang

и другие.

Journal of Hepatology, Год журнала: 2024, Номер unknown

Опубликована: Дек. 1, 2024

Язык: Английский

Процитировано

0

Innovative Management of Type 2 Diabetes: Combined Application of Continuous Glucose Monitoring and Continuous Subcutaneous Insulin Infusion DOI Open Access

康 李

Journal of Clinical Personalized Medicine, Год журнала: 2024, Номер 03(04), С. 2577 - 2585

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

A multi-modal fusion model with enhanced feature representation for chronic kidney disease progression prediction DOI Creative Commons

Yixuan Qiao,

Hong Zhou, Yang Liu

и другие.

Briefings in Bioinformatics, Год журнала: 2024, Номер 26(1)

Опубликована: Ноя. 22, 2024

Abstract Artificial intelligence (AI)-based multi-modal fusion algorithms are pivotal in emulating clinical practice by integrating data from diverse sources. However, most of the existing models focus on designing new modal methods, ignoring critical role feature representation. Enhancing representativeness can address noise caused heterogeneity at source, enabling high performance even with small datasets and simple architectures. Here, we introduce DeepOmix-FLEX (Fusion Learning Enhanced representation for X-modal or FLEX short), a model that integrates data, proteomic metabolomic pathology images across different scales modalities, advanced learning contains Feature Encoding Trainer structure train encoding, thus achieving inter-feature inter-modal. achieves mean AUC 0.887 prediction chronic kidney disease progression an internal dataset, exceeding 0.727 using conventional variables. Following external validation interpretability analyses, our demonstrated favorable generalizability validity, as well ability to exploit markers. In summary, highlights potential AI integrate optimize allocation healthcare resources through accurate prediction.

Язык: Английский

Процитировано

0