Electronic Commerce Research, Год журнала: 2024, Номер unknown
Опубликована: Дек. 26, 2024
Язык: Английский
Electronic Commerce Research, Год журнала: 2024, Номер unknown
Опубликована: Дек. 26, 2024
Язык: Английский
Advances in computational intelligence and robotics book series, Год журнала: 2024, Номер unknown, С. 216 - 225
Опубликована: Май 28, 2024
The text explores the impact of large language models (LLMs), such as ChatGPT, on various industries, emphasizing their accessibility and efficiency. However, it highlights limitations LLMs, including token constraints, unexpected threat posed to creative jobs AI like DALL-E replicate art styles. Companies face a choice between AI-driven solutions human consultants, with importance crafting effective prompts for LLMs emphasized. To adapt, startups established companies must consider utilizing even if lacking in-house expertise, navigate evolving landscape effectively, continues reshape industries professional roles.
Язык: Английский
Процитировано
8International Journal of Hydrogen Energy, Год журнала: 2025, Номер 102, С. 918 - 936
Опубликована: Янв. 12, 2025
Язык: Английский
Процитировано
1Electronic Commerce Research and Applications, Год журнала: 2025, Номер unknown, С. 101485 - 101485
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
1ACM Transactions on Recommender Systems, Год журнала: 2025, Номер unknown
Опубликована: Март 6, 2025
Children form stereotypes by observing stereotypical expressions during childhood, influencing their future beliefs, attitudes, and behavior. These perceptions, often negative, can surface across the many online media platforms that children access, like streaming services social media. Given of items displayed on these are commonly selected recommendation algorithms ( RAs ), it becomes critical to investigate role in suggesting could negatively impact this vulnerable population. We address concern conducting an empirical evaluation gauge presence Gender, Race, Religion among top-10 recommendations generated a wide range two well-known datasets different domains: Movielens (movies) GoodReads (books). Results analyses reveal all frequently recommend items. Gender particularly prevalent, appearing almost every list emerging as most common stereotype. Our results indicate no algorithm has consistent tendency towards recommending more content; instead, high stereotype be found strategies. Outcomes from work underscore potential risks pose perpetuating reinforcing harmful stereotypes—this prompts reflections implications for design recommender systems.
Язык: Английский
Процитировано
0SSRN Electronic Journal, Год журнала: 2025, Номер unknown
Опубликована: Янв. 1, 2025
Язык: Английский
Процитировано
0Sex Education, Год журнала: 2024, Номер unknown, С. 1 - 15
Опубликована: Сен. 20, 2024
Язык: Английский
Процитировано
1The Frontiers of Society Science and Technology, Год журнала: 2024, Номер 6(1)
Опубликована: Янв. 1, 2024
In this paper, based on natural language processing technology, we designed and realized a database system of judgement instruments. By analyzing the instruments crimes, have used technology to classify instruments, extract keywords information, realize rapid retrieval accurate analysis instrument database. design process, adopted reasonable method for ensure stability scalability system. realization scheme, made full use existing technical resources algorithmic models efficiency accuracy Through study, come conclusion that job-related crime can effectively improve quality provide strong support research practice in related fields.
Язык: Английский
Процитировано
0Electronic Commerce Research, Год журнала: 2024, Номер unknown
Опубликована: Дек. 26, 2024
Язык: Английский
Процитировано
0