
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 5, 2024
Язык: Английский
Research Square (Research Square), Год журнала: 2024, Номер unknown
Опубликована: Ноя. 5, 2024
Язык: Английский
Journal of Molecular Liquids, Год журнала: 2024, Номер 397, С. 124127 - 124127
Опубликована: Янв. 26, 2024
Язык: Английский
Процитировано
8Journal of Molecular Liquids, Год журнала: 2023, Номер 392, С. 123286 - 123286
Опубликована: Окт. 12, 2023
Язык: Английский
Процитировано
15Journal of Molecular Liquids, Год журнала: 2024, Номер 405, С. 125024 - 125024
Опубликована: Май 19, 2024
Язык: Английский
Процитировано
5Journal of Molecular Liquids, Год журнала: 2023, Номер 391, С. 123184 - 123184
Опубликована: Окт. 1, 2023
Язык: Английский
Процитировано
12Journal of Hazardous Materials, Год журнала: 2024, Номер 469, С. 134012 - 134012
Опубликована: Март 12, 2024
Язык: Английский
Процитировано
4Journal of Chemical & Engineering Data, Год журнала: 2025, Номер unknown
Опубликована: Фев. 6, 2025
Benzimidazole has many biological activities and is widely used in the pharmaceutical chemical industries. Under conditions of P = 101.2 kPa T 273.15–323.15 K, solubility benzimidazole 19 monosolvents was determined using static gravimetric method. The positively correlated with temperature varied among solvents, n-pentanol having highest value. Four models (modified Apelblat, NRTL, UNIQUAC, Margules) were to correlate data, modified Apelblat model best fitting effect. Then, thermodynamic properties mixing process estimated by NRTL model. In addition, internal interactions analyzed molecular electrostatic potentials (MEPs) Hirshfeld surface (HS), revealing a strong solvent-benzimidazole hydrogen-bonding tendency. Furthermore, Hansen parameters (HSPs), interaction region indicator (IRI), energy evaluate benzimidazole's monosolvents. Results show that main factors influencing behavior include solvent polarity (ET(30)) HSPs. These experimental results can be for purification, crystallization, industrial applications as well similar substances.
Язык: Английский
Процитировано
0Crystal Growth & Design, Год журнала: 2025, Номер unknown
Опубликована: Фев. 10, 2025
Solubility regression modeling is foundational for several chemical engineering applications, particularly crystallization process development. Traditionally, these models rely on parametric semimechanistic approaches such as the Van't Hoff Jouyban-Acree (VH-JA) cosolvency model. Although generally provide narrow prediction intervals, they can exhibit increased bias when dealing with significant solute heat capacities or complex mixture effects. This study explores machine learning, including Random Forests, Support Vector Machines, Gaussian Process Regression, and Neural Networks, potential alternatives. While most learning offered a lower training error, it was observed that their predictive quality quickly deteriorates further from data. Hence, hybrid approach explored to leverage low of variance VH-JA model through heterogeneous locally weighted bagging ensembles. Key methodology quantifying, tracking, minimizing uncertainty using ensemble. illustrated case solubility ketoconazole in binary mixtures 2-propanol water. The optimal ensemble, comprising 58% stepwise 42% models, reduced root-mean-squared error maximum absolute percentage by ≈30% compared full VH-JA, while preserving comparable interval.
Язык: Английский
Процитировано
0Case Studies in Thermal Engineering, Год журнала: 2023, Номер 49, С. 103268 - 103268
Опубликована: Июль 7, 2023
This paper investigates the application of Support Vector Regression with Quadratic Kernel (QSVR) for modeling solubility lornoxicam in supercritical carbon dioxide. The dataset comprises temperature (T) and pressure (P) as input variables, while (Y) serves output variable entire modeling. is measured Kelvin (K), bar inputs models. To improve predictive performance QSVR model, three distinct hyper-parameter optimization techniques, namely Genetic Algorithm (GA), Tabu Search (TS), Bayesian Hyperparameter Optimization (BHO) are employed. These methods utilized to fine-tune hyper-parameters model enhance its accuracy. BHO-QSVR achieved an impressive R2 score 0.96725, indicating a strong fit between predicted actual values. Additionally, it exhibited Mean Absolute Error (MAE) 1.75666E-05 maximum error 3.02849E-05. Comparatively, GA-QSVR TS-QSVR models also performed well, achieving scores 0.95346 0.95882, respectively. MAE 1.56725E-05 4.92382E-05, 1.84075E-05 5.02443E-05.
Язык: Английский
Процитировано
8Journal of Molecular Liquids, Год журнала: 2024, Номер 408, С. 125240 - 125240
Опубликована: Июнь 26, 2024
Язык: Английский
Процитировано
2Case Studies in Thermal Engineering, Год журнала: 2023, Номер 49, С. 103236 - 103236
Опубликована: Июнь 29, 2023
Data-driven models were employed for the solubility correlation, while focus was on modeling of raloxifene drug and density carbon dioxide based temperature (T) pressure (P) inputs. Three Machine Learning models, namely Multilayer Perceptron (MLP), Bayesian Ridge Regression (BRR), LASSO regression, optimized using MPHPT method hyper-parameter tuning. The dataset consisted experimental measurements (y), CO2 density. For prediction density, MLP model exhibited excellent performance with an R2 score 0.99726, demonstrating a significant level association between anticipated observed values. mean squared error (MSE) 9.8721E+01, absolute percentage (MAPE) 1.78565E-02, maximum 1.86395E+01. BRR achieved slightly lower accuracy, scores 0.83317 0.83001, respectively. Regarding drug, demonstrated strong predictive capability 0.99343. MSE 3.0869E-02, MAPE 4.02666E-02, 3.01133E-01. also provided reasonable predictions, 0.90955 0.8891, However, they higher MSEs MAPEs compared to model.
Язык: Английский
Процитировано
5