Journal of Molecular Structure, Год журнала: 2024, Номер unknown, С. 140286 - 140286
Опубликована: Окт. 1, 2024
Язык: Английский
Journal of Molecular Structure, Год журнала: 2024, Номер unknown, С. 140286 - 140286
Опубликована: Окт. 1, 2024
Язык: Английский
Journal of Materials Chemistry B, Год журнала: 2024, Номер 12(42), С. 10786 - 10817
Опубликована: Янв. 1, 2024
The review highlights the potential of RGD-conjugated AuNPs in cancer diagnosis and treatment, including breast cancer. It emphasizes need for further research to fully realize this technology’s inspire future investigations.
Язык: Английский
Процитировано
5Results in Chemistry, Год журнала: 2025, Номер unknown, С. 102101 - 102101
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Malacca Pharmaceutics, Год журнала: 2025, Номер 3(1), С. 32 - 41
Опубликована: Март 4, 2025
Glaucoma is a leading cause of irreversible blindness, primarily managed by lowering intraocular pressure (IOP). Carbonic Anhydrase-II (CA-II) inhibitors play crucial role in this treatment reducing aqueous humor production. However, existing CA-II often suffer from poor selectivity, side effects, and limited bioavailability, highlighting the need for more efficient targeted drug discovery approaches. This study uses machine learning-driven Quantitative Structure-Activity Relationship (QSAR) modeling to predict inhibition based on molecular descriptors, significantly enhancing screening efficiency over traditional experimental methods. By evaluating multiple learning models, including Support Vector Machine, Gradient Boosting, Random Forest, we identify SVM as most effective classifier, achieving highest accuracy (83.70%) F1-score (89.36%). Class imbalance remains challenging despite high sensitivity, necessitating further improvements through resampling hyperparameter optimization. Our findings underscore potential learning-based virtual accelerating inhibitor identification advocate integrating AI-driven approaches with techniques. Future directions include deep enhancements hybrid learning-docking frameworks improve prediction facilitate development potent selective glaucoma treatments.
Язык: Английский
Процитировано
0Molecular Diversity, Год журнала: 2025, Номер unknown
Опубликована: Фев. 15, 2025
Язык: Английский
Процитировано
0ACS Omega, Год журнала: 2025, Номер 10(7), С. 7112 - 7119
Опубликована: Фев. 16, 2025
Two new crystalline compounds, named [LG·H2O]n (1; LG = liquiritigenin) and [LQ·C2H5OH·H2O]n (2; LQ liquiritin), have been synthesized structurally characterized by single-crystal powder X-ray diffraction, thermogravimetric analyses (TGA), nuclear magnetic resonance (NMR), high-resolution mass spectrometry (HR-MS), infrared spectra (IR). 1 2 crystallize in space groups Pna21 P212121, respectively. In the structure of 1, liquiritigenin water molecules are connected hydrogen bonds for construction a novel 3,5-connected network topology with point symbol (63)(67·83), which each molecule acts as 5-connected 3-connected node, Both reduce amyloid-β-induced toxicity Caenorhabditis elegans (CL4176 strain) improving expression level SOD. Gene studies RT-qPCR indicate upregulation skn-1 sod-3 while downregulation daf-16 hsf-1 C. elegans. Molecular docking that combine well vascular endothelial growth factor A (VEGFA), free binding energies calculated to be −6.7 −7.9 kcal·mol–1, Moreover, anti-amyloid-β ability amorphous or has studied.
Язык: Английский
Процитировано
0Computer Methods and Programs in Biomedicine, Год журнала: 2025, Номер unknown, С. 108793 - 108793
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
0ChemistrySelect, Год журнала: 2024, Номер 9(47)
Опубликована: Дек. 1, 2024
Abstract This study enabled us to develop new analogs of the Schiff thiazole base with high inhibitory activity against α‐amylase enzyme as effective anti‐diabetic drug candidates. To this end, we used virtual screening methods such 3D‐QSAR, molecular docking, ADMET properties, dynamics simulation, biological efficacy, and retrosynthesis on selected derivatives. The results 3D‐QSAR modeling showed that CoMSIA_DH model has excellent predictive ability (Q 2 = 0.71, R train 0.978, test 0.987, SEE 0.072). Using template (17), designed three ligands activities enzyme. predictions for molecules met Lipinski's rule pharmacokinetic profiles. Ligands were anchored in α‐amylase's active site, showing good binding affinities. docking stability receptor confirmed through simulations. CaverDock program was utilized identify tunnels which are most likely migrate from site surface, thereby determining efficacy target compounds. found compound B1 be effective, using retrosynthesis, a pathway synthesis these therapeutic prospects identified.
Язык: Английский
Процитировано
1Journal of Molecular Structure, Год журнала: 2024, Номер unknown, С. 141178 - 141178
Опубликована: Дек. 1, 2024
Язык: Английский
Процитировано
1Journal of Molecular Structure, Год журнала: 2024, Номер unknown, С. 140286 - 140286
Опубликована: Окт. 1, 2024
Язык: Английский
Процитировано
0