Energy 360., Год журнала: 2025, Номер unknown, С. 100027 - 100027
Опубликована: Май 1, 2025
Язык: Английский
Energy 360., Год журнала: 2025, Номер unknown, С. 100027 - 100027
Опубликована: Май 1, 2025
Язык: Английский
Next Materials, Год журнала: 2025, Номер 8, С. 100522 - 100522
Опубликована: Фев. 10, 2025
Язык: Английский
Процитировано
2Journal of Industrial and Engineering Chemistry, Год журнала: 2025, Номер unknown
Опубликована: Апрель 1, 2025
Язык: Английский
Процитировано
2Journal of Environmental Management, Год журнала: 2025, Номер 376, С. 124561 - 124561
Опубликована: Фев. 18, 2025
Язык: Английский
Процитировано
1Materials Science and Engineering R Reports, Год журнала: 2025, Номер 165, С. 101010 - 101010
Опубликована: Май 3, 2025
Язык: Английский
Процитировано
1Diagnostics, Год журнала: 2025, Номер 15(6), С. 761 - 761
Опубликована: Март 18, 2025
Background: Melanoma is a highly aggressive form of skin cancer, necessitating early and accurate detection for effective treatment. This study aims to develop novel classification system melanoma that integrates Convolutional Neural Networks (CNNs) feature extraction the Aquila Optimizer (AO) dimension reduction, improving both computational efficiency accuracy. Methods: The proposed method utilized CNNs extract features from images, while AO was employed reduce dimensionality, enhancing performance model. effectiveness this hybrid approach evaluated on three publicly available datasets: ISIC 2019, ISBI 2016, 2017. Results: For 2019 dataset, model achieved 97.46% sensitivity, 98.89% specificity, 98.42% accuracy, 97.91% precision, 97.68% F1-score, 99.12% AUC-ROC. On 2016 it reached 98.45% 98.24% 97.22% 97.84% 97.62% 98.97% 2017, results were 98.44% 98.86% 97.96% 98.12% 97.88% 99.03% outperforms existing advanced techniques, with 4.2% higher 6.2% improvement in 5.8% increase specificity. Additionally, reduced complexity by up 37.5%. Conclusions: deep learning-Aquila (DL-AO) framework offers efficient detection, making suitable deployment resource-constrained environments such as mobile edge computing platforms. integration DL metaheuristic optimization significantly enhances robustness, detection.
Язык: Английский
Процитировано
0Small, Год журнала: 2025, Номер unknown
Опубликована: Апрель 24, 2025
Abstract Quinolone antibiotics, particularly moxifloxacin (MOX), are increasingly contaminating aquatic ecosystems, posing significant threats to both the environment and human health. Due its hydrophilicity stability, traditional water treatment methods ineffective in degrading MOX. In this study, a novel S‐type heterojunction photocatalyst, In‐Ba‐10, is introduced which combines barium titanate (BaTiO 3 ) indium sulfide (In 2 S address challenge. The In‐Ba‐10 catalyst demonstrates excellent photocatalytic performance, with hydrogen production rate of 2050 µmol g −1 h MOX degradation constant (k) 0.049 min . Compared BaTiO alone, performance enhanced by 48‐ 49‐fold, respectively. Comprehensive characterization, including Raman spectroscopy, X‐ray photoelectron spectroscopy (XPS), electron microscopy, reveals that effectively promotes charge separation transfer, reduces electron–hole recombination, improves catalytic efficiency. First‐principles calculations further confirm role as reduction site oxidation site. addition high activity, ‐BaTiO shows stability over multiple cycles, making it promising candidate for sustainable wastewater treatment. This study highlights potential photocatalysts environmental remediation energy applications.
Язык: Английский
Процитировано
0Chemical Engineering Science, Год журнала: 2025, Номер unknown, С. 121761 - 121761
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Applied Surface Science, Год журнала: 2025, Номер unknown, С. 163536 - 163536
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0Energy 360., Год журнала: 2025, Номер unknown, С. 100027 - 100027
Опубликована: Май 1, 2025
Язык: Английский
Процитировано
0