Journal of Mechanical Science and Technology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 21, 2024
Язык: Английский
Journal of Mechanical Science and Technology, Год журнала: 2024, Номер unknown
Опубликована: Дек. 21, 2024
Язык: Английский
ACS Applied Materials & Interfaces, Год журнала: 2024, Номер 16(23), С. 29547 - 29569
Опубликована: Май 29, 2024
The use of metamaterials in various devices has revolutionized applications optics, healthcare, acoustics, and power systems. Advancements these fields demand novel or superior that can demonstrate targeted control electromagnetic, mechanical, thermal properties matter. Traditional design systems methods often require manual manipulations which is time-consuming resource intensive. integration artificial intelligence (AI) optimizing metamaterial be employed to explore variant disciplines address bottlenecks design. AI-based also enable the development by parameters cannot achieved using traditional methods. application AI leveraged accelerate analysis vast data sets as well better utilize limited via generative models. This review covers transformative impact for current challenges, emerging fields, future directions, within each domain are discussed.
Язык: Английский
Процитировано
18Engineering Structures, Год журнала: 2025, Номер 327, С. 119599 - 119599
Опубликована: Янв. 4, 2025
Язык: Английский
Процитировано
2Mechanical Systems and Signal Processing, Год журнала: 2023, Номер 200, С. 110593 - 110593
Опубликована: Июль 12, 2023
Язык: Английский
Процитировано
41Materials Today Energy, Год журнала: 2023, Номер 37, С. 101387 - 101387
Опубликована: Авг. 20, 2023
Язык: Английский
Процитировано
37Sensors and Actuators A Physical, Год журнала: 2023, Номер 365, С. 114871 - 114871
Опубликована: Ноя. 27, 2023
Язык: Английский
Процитировано
29Materials Horizons, Год журнала: 2024, Номер 11(11), С. 2615 - 2627
Опубликована: Янв. 1, 2024
We introduce a novel deep learning-based inverse design framework with data augmentation for chiral mechanical metamaterials Bézier curve-shaped bi-material rib realizing wide range of negative thermal expansion and Poisson's ratio.
Язык: Английский
Процитировано
12Applied Acoustics, Год журнала: 2025, Номер 233, С. 110630 - 110630
Опубликована: Фев. 27, 2025
Язык: Английский
Процитировано
1Materials & Design, Год журнала: 2025, Номер unknown, С. 113854 - 113854
Опубликована: Март 1, 2025
Язык: Английский
Процитировано
1Engineering Applications of Artificial Intelligence, Год журнала: 2024, Номер 133, С. 108595 - 108595
Опубликована: Май 15, 2024
Язык: Английский
Процитировано
8Applied Energy, Год журнала: 2023, Номер 355, С. 122216 - 122216
Опубликована: Ноя. 18, 2023
Segmented thermoelectric generators (STEGs) provide an excellent platform for thermal energy harvesting devices because they improve power generation performance across a broad range of operating temperatures. Despite the benefit direct energy-to-electricity conversion, conventional STEG optimization approaches are unable to systematic method selecting optimal multiple stacks p- and-n-type materials (TEs) legs from set numerous TE materials. In this study, we propose based on machine learning find maximization. A deep neural network (DNN) is trained using initial dataset generated via Finite Element Method (FEM), with inputs including temperature-dependent properties and n-type materials, lengths each segment, external loads, as well corresponding outputs. The DNN captures inherent nonlinear relationship between these combination genetic algorithm (GA) efficiently navigates vast design space 88 p-type 70 along device factors. It formulates four stacked segment pairs in n-leg TEGs, targeting new superior designs enhanced power, efficiency, or both. iteratively refined active (AL) by incorporating enhance prediction accuracy. optimized STEGs exhibit efficiency that 1.91 1.5 times higher, respectively, than top training composed 157.916 STEGs. Furthermore, compared TEG without segmentation, our discovered high-performing designs.
Язык: Английский
Процитировано
15