Deep learning-aided topology design of metasurfaces for Rayleigh waves DOI Creative Commons
Cheng Zhao, Chen‐Xu Liu,

Gui‐Lan Yu

и другие.

Journal of Computational Design and Engineering, Год журнала: 2024, Номер 11(3), С. 56 - 71

Опубликована: Апрель 16, 2024

Abstract Metasurfaces can effectively attenuate Rayleigh waves propagating in soil, safeguarding structures from ambient vibrations or earthquakes. However, there remains a lack of efficient approaches for designing metasurfaces that isolate within desired frequency ranges under different site conditions. This study presents deep learning (DL)-based topology optimization method isolating target range, which has potential applications surface wave control. The proposed DL model employs variational autoencoder to transform high-dimensional and discrete topologies into low-dimensional continuous latent vectors, reducing the design difficulty. On this basis, conditional tandem neural network is constructed optimize vectors soil conditions, improving efficiency verifying universality method. reliability validated through 100 tests with determination coefficients more than 0.99. In addition, generations same are explored, providing designers choices. insulation capabilities designed against Metro-induced demonstrated time- frequency-domain responses. presented DL-aided provides novel insight customization manipulating waves.

Язык: Английский

Systematic Review of Artificial Intelligence, Machine Learning, and Deep Learning in Machining Operations: Advancements, Challenges, and Future Directions DOI
Rupinder Kaur, Raman Kumar, Himanshu Aggarwal

и другие.

Archives of Computational Methods in Engineering, Год журнала: 2025, Номер unknown

Опубликована: Апрель 30, 2025

Язык: Английский

Процитировано

0

Redesigning Finite Metasurfaces for Enhanced Energy Harvesting with Lead-Free (K, Na)NbO3 Ceramics DOI
Hyung Jin Lee,

Seung Il Kim,

Dong Hwi Kim

и другие.

Sensors and Actuators A Physical, Год журнала: 2025, Номер unknown, С. 116663 - 116663

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

Dnn-Based Shape Optimization of Gradient-Index Phononic Crystals with Sensitivity Analysis for Tunable Focal Position and Robust Energy Harvesting DOI
Minuk Kim, Sangryun Lee

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Machine learning and experiments: A synergy for the development of functional materials DOI
Bowen Zheng, Zeqing Jin, Grace Hu

и другие.

MRS Bulletin, Год журнала: 2023, Номер 48(2), С. 142 - 152

Опубликована: Фев. 1, 2023

Язык: Английский

Процитировано

8

Deep learning-aided topology design of metasurfaces for Rayleigh waves DOI Creative Commons
Cheng Zhao, Chen‐Xu Liu,

Gui‐Lan Yu

и другие.

Journal of Computational Design and Engineering, Год журнала: 2024, Номер 11(3), С. 56 - 71

Опубликована: Апрель 16, 2024

Abstract Metasurfaces can effectively attenuate Rayleigh waves propagating in soil, safeguarding structures from ambient vibrations or earthquakes. However, there remains a lack of efficient approaches for designing metasurfaces that isolate within desired frequency ranges under different site conditions. This study presents deep learning (DL)-based topology optimization method isolating target range, which has potential applications surface wave control. The proposed DL model employs variational autoencoder to transform high-dimensional and discrete topologies into low-dimensional continuous latent vectors, reducing the design difficulty. On this basis, conditional tandem neural network is constructed optimize vectors soil conditions, improving efficiency verifying universality method. reliability validated through 100 tests with determination coefficients more than 0.99. In addition, generations same are explored, providing designers choices. insulation capabilities designed against Metro-induced demonstrated time- frequency-domain responses. presented DL-aided provides novel insight customization manipulating waves.

Язык: Английский

Процитировано

2