Machine learning-assisted development of TMDs-type gas-sensitive materials for dissolved gases in oil-immersed transformer oils DOI
Qingbin Zeng, Mingxiang Wang, Yiyi Zhang

и другие.

Materials Today Chemistry, Год журнала: 2025, Номер 44, С. 102583 - 102583

Опубликована: Фев. 13, 2025

Язык: Английский

Structural modification of A-C-A configured X–PCIC acceptor molecule for efficient photovoltaic properties with low energy loss in organic solar cells DOI
Mariam Ishtiaq, Mohammad Salim Akhter, Muhammad Waqas

и другие.

Journal of Molecular Graphics and Modelling, Год журнала: 2024, Номер 129, С. 108722 - 108722

Опубликована: Фев. 7, 2024

Язык: Английский

Процитировано

7

Machine-learning-assisted hydrogen adsorption descriptor design for bilayer MXenes DOI
Weizhi Tian, Gongchang Ren, Yuanting Wu

и другие.

Journal of Cleaner Production, Год журнала: 2024, Номер 450, С. 141953 - 141953

Опубликована: Март 28, 2024

Язык: Английский

Процитировано

7

Automated synthesis and processing of functional nanomaterials: Advances and perspectives DOI
Masoud Negahdary, Samuel Mabbott

Coordination Chemistry Reviews, Год журнала: 2024, Номер 523, С. 216249 - 216249

Опубликована: Окт. 11, 2024

Язык: Английский

Процитировано

7

A 30-Year Review on Nanocomposites: Comprehensive Bibliometric Insights into Microstructural, Electrical, and Mechanical Properties Assisted by Artificial Intelligence DOI Open Access
Fernando Gomes de Souza, Shekhar Bhansali, Kaushik Pal

и другие.

Materials, Год журнала: 2024, Номер 17(5), С. 1088 - 1088

Опубликована: Фев. 27, 2024

From 1990 to 2024, this study presents a groundbreaking bibliometric and sentiment analysis of nanocomposite literature, distinguishing itself from existing reviews through its unique computational methodology. Developed by our research group, novel approach systematically investigates the evolution nanocomposites, focusing on microstructural characterization, electrical properties, mechanical behaviors. By deploying advanced Boolean search strategies within Scopus database, we achieve meticulous extraction in-depth exploration thematic content, methodological advancement in field. Our uniquely identifies critical trends insights concerning microstructure, attributes, performance. The paper goes beyond traditional textual analytics evaluation, offering new interpretations data highlighting significant collaborative efforts influential studies domain. findings uncover language, shifts, global contributions, providing distinct comprehensive view dynamic research. A component is “State-of-the-Art Gaps Extracted Results Discussions” section, which delves into latest advancements This section details various types their properties introduces applications, especially films. tracing historical progress identifying emerging trends, emphasizes significance collaboration molding Moreover, “Literature Review Guided Artificial Intelligence” showcases an innovative AI-guided research, first Focusing articles 2023, selected based citation frequency, method offers perspective interplay between nanocomposites properties. It highlights composition, structure, functionality systems, integrating recent for overview current knowledge. analysis, with average score 0.638771, reflects positive trend academic discourse increasing recognition potential nanocomposites. another novelty, maps intellectual domain, emphasizing pivotal themes influence crosslinking time attributes. While acknowledging limitations, exemplifies indispensable role tools synthesizing understanding extensive body literature. work not only elucidates prevailing but also contributes insights, enhancing

Язык: Английский

Процитировано

6

Machine Learning Assisted Enhancement in a Two-Dimensional Material’s Sensing Performance DOI

Suparna Das,

Hirak Mazumdar, Kamil Reza Khondakar

и другие.

ACS Applied Nano Materials, Год журнала: 2024, Номер 7(12), С. 13893 - 13918

Опубликована: Июнь 5, 2024

Two-dimensional (2D) materials have seen a dramatic increase in use recent years due to their exceptional characteristics, which make them perfect for wide range of sensing applications. However, achieving optimal performance 2D material-based sensors often poses challenges owing material limitations and environmental factors. The combination ML algorithms with offers way maximize selectivity, sensitivity, overall sensor dependability. study starts by looking at the basic characteristics many uses sensing, such as graphene transition metal dichalcogenides (TMDs). It then explores difficulties encountered conventional techniques shows how machine learning (ML) overcome these difficulties. A thorough examination various methods used is provided, along an explanation functions data processing, pattern identification, real-time adaptive sensing. paper also discusses might lead better measures including lower false positive rates higher accuracy. Comprehensive analysis done on case studies that demonstrate effective implementations domains, industrial applications, monitoring, healthcare. In conclusion, abstract prospects future, highlighting learning-assisted are developing they transform technologies variety fields.

Язык: Английский

Процитировано

6

MXenes and their composites as electrodes for sodium ion batteries DOI

Wenchao Bi,

Shuo Li, Wenshun Wang

и другие.

Energy storage materials, Год журнала: 2024, Номер 71, С. 103568 - 103568

Опубликована: Июнь 15, 2024

Язык: Английский

Процитировано

5

Advancements in Nanocomposites: An In-depth Exploration of Microstructural, Electrical, and Mechanical Dynamics DOI Open Access
Fernando Gomes de Souza, Shekhar Bhansali, Kaushik Pal

и другие.

Опубликована: Янв. 3, 2024

This research presents a comprehensive bibliometric and sentiment analysis of nanocomposite literature from 1990 to 2024. Employing cutting-edge computational methods, the study delves deep into progression microstructural characterization, electrical properties, mechanical behaviors nanocomposites. The utilizes advanced Boolean search strategies Scopus database, ensuring thorough extraction thematic content. results explore various themes insights, shedding light on trends evident in particularly prominence microstructure, attributes, performance. paper also offers textual analytics data, showcasing critical collaborative efforts influential studies. Significant discoveries encompass evolution language, shifts focus, global contributions, providing perspective current landscape its dynamic evolution. Moving forward, "State-of-the-Art Gaps Extracted Results Discussions" section most recent advancements research. It types nanocomposites, with particular emphasis their characteristics, dynamics, application films. identifies key themes, traces historical progress, highlights emerging while underscoring significance collaboration influence pivotal studies that have shaped field. Lastly, "Literature Review Guided by Artificial Intelligence" section, introduces revised approach for researching nanocomposites through AI-guided techniques. prioritizes articles published 2023 based citation frequency. Here, focus is exploring relationship between emphasizing fundamental interactions impact characteristics. Various systems are covered, highlighting composition, structure, functionality. Findings integrated provide overview state knowledge this area. Notably, analysis, anchored an average score 0.638771, underscores positive trajectory academic discourse, growing recognition potential exploration maps intellectual domain, crosslinking time attributes. While thorough, it acknowledges limitations advocates broader database inclusion future endeavors. work elucidates prevailing research, indispensable role tools comprehending vast wealth information.

Язык: Английский

Процитировано

4

Micro-kinetic modelling of the CO reduction reaction on single atom catalysts accelerated by machine learning DOI

Qing-Meng Zhang,

Zhaoyu Wang,

Hao Zhang

и другие.

Physical Chemistry Chemical Physics, Год журнала: 2024, Номер 26(14), С. 11037 - 11047

Опубликована: Янв. 1, 2024

Electrochemical CO

Язык: Английский

Процитировано

4

Enhanced learning loop framework accelerates screening of bimetallic catalysts with high oxygen reduction properties in different coordination environments DOI

Pei Song,

Zepeng Jia,

Sen Lu

и другие.

International Journal of Hydrogen Energy, Год журнала: 2024, Номер 73, С. 305 - 315

Опубликована: Июнь 11, 2024

Язык: Английский

Процитировано

4

Synthesis and characterization of a nanocomposite consisting of Ti3C2Tx (MXene) and WS2 nanosheets for potential use in supercapacitors DOI
Pınar Talay Pınar, Mehmet Gülcan, Yavuz Yardım

и другие.

Journal of Alloys and Compounds, Год журнала: 2024, Номер unknown, С. 177656 - 177656

Опубликована: Ноя. 1, 2024

Язык: Английский

Процитировано

4