Identification of Patterns in CO2 Emissions among 208 Countries: K-Means Clustering Combined with PCA and Non-Linear t-SNE Visualization DOI Creative Commons
Ana Lorena Jiménez Preciado, Salvador Cruz Aké, Francisco Venegas-Martı́nez

и другие.

Mathematics, Год журнала: 2024, Номер 12(16), С. 2591 - 2591

Опубликована: Авг. 22, 2024

This paper identifies patterns in total and per capita CO2 emissions among 208 countries considering different emission sources, such as cement, flaring, gas, oil, coal. research uses linear non-linear dimensional reduction techniques, combining K-means clustering with principal component analysis (PCA) t-distributed stochastic neighbor embedding (t-SNE), which allows the identification of distinct profiles nations. approach effective heterogeneous despite highly nature data. The optimal number clusters is determined using Calinski–Harabasz Davies–Bouldin scores, five six for emissions, respectively. findings reveal that t-SNE brings together world’s largest economies emitters, i.e., China, USA, India, Russia, into a single cluster, while PCA provides country Russia. Regarding generates cluster only one country, Qatar, due to its significant flaring byproduct oil industry, low population. study concludes international collaboration coherent global policies are crucial effectively addressing developing targeted climate change mitigation strategies.

Язык: Английский

Assessing the coal-to-nuclear transition: Economic impacts on carbon emissions, energy security, and sustainable development in Guangdong Province DOI
Hongli Zhao, Gang Zhang, Chen Cui

и другие.

International Journal of Hydrogen Energy, Год журнала: 2025, Номер 117, С. 97 - 109

Опубликована: Март 14, 2025

Язык: Английский

Процитировано

0

Thermal-Hydraulic Prediction of Symmetry Coil Once-Through Water Generation for Maritime Nuclear Reactors in Tropical Conditions DOI

Dilafruz Fayziyeva anon

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

A novel data-driven rule-base approach with driving factor decomposition for multi-scenario prediction on carbon emission reduction DOI
Fei-Fei Ye,

Rongyan You,

Long-Hao Yang

и другие.

Computers & Industrial Engineering, Год журнала: 2025, Номер unknown, С. 111217 - 111217

Опубликована: Май 1, 2025

Язык: Английский

Процитировано

0

The impact of digital economy on carbon emissions: Insights from the G-20 energy transition and environmental governance DOI Creative Commons

Yinlong Ma,

Ruirui Li

Energy Strategy Reviews, Год журнала: 2024, Номер 57, С. 101612 - 101612

Опубликована: Дек. 27, 2024

Язык: Английский

Процитировано

2

Identification of Patterns in CO2 Emissions among 208 Countries: K-Means Clustering Combined with PCA and Non-Linear t-SNE Visualization DOI Creative Commons
Ana Lorena Jiménez Preciado, Salvador Cruz Aké, Francisco Venegas-Martı́nez

и другие.

Mathematics, Год журнала: 2024, Номер 12(16), С. 2591 - 2591

Опубликована: Авг. 22, 2024

This paper identifies patterns in total and per capita CO2 emissions among 208 countries considering different emission sources, such as cement, flaring, gas, oil, coal. research uses linear non-linear dimensional reduction techniques, combining K-means clustering with principal component analysis (PCA) t-distributed stochastic neighbor embedding (t-SNE), which allows the identification of distinct profiles nations. approach effective heterogeneous despite highly nature data. The optimal number clusters is determined using Calinski–Harabasz Davies–Bouldin scores, five six for emissions, respectively. findings reveal that t-SNE brings together world’s largest economies emitters, i.e., China, USA, India, Russia, into a single cluster, while PCA provides country Russia. Regarding generates cluster only one country, Qatar, due to its significant flaring byproduct oil industry, low population. study concludes international collaboration coherent global policies are crucial effectively addressing developing targeted climate change mitigation strategies.

Язык: Английский

Процитировано

1