Nuclear Science and Techniques, Год журнала: 2024, Номер 36(1)
Опубликована: Дек. 18, 2024
Язык: Английский
Nuclear Science and Techniques, Год журнала: 2024, Номер 36(1)
Опубликована: Дек. 18, 2024
Язык: Английский
IEEE Transactions on Artificial Intelligence, Год журнала: 2025, Номер 6(5), С. 1345 - 1359
Опубликована: Янв. 3, 2025
Zero-shot learning (ZSL) aims to recognize unseen class image objects using manually defined semantic knowledge corresponding both seen and images. The key of ZSL lies in building the interaction between precise data fuzzy knowledge. fuzziness is attributed difficulty quantifying human However, existing methods ignore inherent treat it as during visual-semantic interaction. This not good for transferring from classes classes. In order solve this problem, we propose a Visual-semantic Fuzzy Interaction Network (VSFIN) ZSL. VSFIN utilize an effective encoder-decoder structure, including prototype encoder (SPE) visual feature decoder (VFD). SPE VFD enable features interact with via cross-attention. To achieve VFD, introduce concept membership function set theory design loss function. allows certain degree imprecision interaction, thereby enabling becomingly given Moreover, rank sum test distribution alignment alleviate bias towards Extensive experiments on three widely used benchmarks have demonstrated that outperforms current state-of-the-art under conventional (CZSL) generalized (GZSL) settings.
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер unknown, С. 129530 - 129530
Опубликована: Фев. 1, 2025
Язык: Английский
Процитировано
0Applied Intelligence, Год журнала: 2025, Номер 55(6)
Опубликована: Фев. 7, 2025
Язык: Английский
Процитировано
0Neurocomputing, Год журнала: 2025, Номер 640, С. 130264 - 130264
Опубликована: Апрель 28, 2025
Язык: Английский
Процитировано
0Expert Systems with Applications, Год журнала: 2023, Номер 238, С. 121986 - 121986
Опубликована: Окт. 10, 2023
Transfer learning for motor imagery-based brain-computer interfaces (MI-BCIs) struggles with inter-subject variability, hindering its generalization to new users. This paper proposes an advanced implicit transfer framework, META-EEG, designed overcome the challenge arising from variability. By incorporating gradient-based meta-learning intermittent freezing strategy, META-EEG ensures efficient feature representation learning, providing a robust zero-calibration solution. A comparative analysis reveals that significantly outperforms all baseline methods and competing on three different public datasets. Moreover, we demonstrate efficiency of proposed model through neurophysiological feature-representational analysis. With robustness superior performance challenging datasets, provides effective solution calibration-free MI-EEG classification, facilitating broader usability.
Язык: Английский
Процитировано
7Neurocomputing, Год журнала: 2024, Номер unknown, С. 128580 - 128580
Опубликована: Сен. 1, 2024
Язык: Английский
Процитировано
2Expert Systems with Applications, Год журнала: 2023, Номер 236, С. 121287 - 121287
Опубликована: Авг. 25, 2023
Язык: Английский
Процитировано
5Neurocomputing, Год журнала: 2024, Номер 594, С. 127829 - 127829
Опубликована: Май 10, 2024
Язык: Английский
Процитировано
0Signal Image and Video Processing, Год журнала: 2024, Номер 19(1)
Опубликована: Дек. 2, 2024
Язык: Английский
Процитировано
0Nuclear Science and Techniques, Год журнала: 2024, Номер 36(1)
Опубликована: Дек. 18, 2024
Язык: Английский
Процитировано
0