A Novel Interpolation Consistency for Bad Semi-Supervised Generative Adversarial Networks (Icbsgan) in Image Classification and Interpretation DOI
Mohammad Saber Iraji, Jafar Tanha, Mohammad Ali Balafar

и другие.

Опубликована: Янв. 1, 2023

Semi-supervised learning techniques leverage both labeled and unlabeled images to enhance classification performance in scenarios where are limited. However, challenges, such as determining appropriate thresholds, integrating incorrect pseudo-labels, establishing effective consistency augmentations, hinder the effectiveness of existing methods. Additionally, label prediction fluctuations on low-confidence their impact generalization pose further limitations. This research introduces a novel framework named interpolation for bad semi-supervised generative adversarial networks (ICBSGAN) which addresses limitations through utilization new loss function. The proposed model combines training, fusion techniques, regularization learning. ICBSGAN incorporates three types training: fake images, real images. improve generation diverse support vectors low-density areas. It demonstrates linear behavior at interpolation, reducing predictions, improving stability, identification decision boundaries. Experimental evaluations CIFAR-10, CINIC-10, MNIST, SVHN datasets showcase compared state-of-the-art approach achieves notable improvements error rate from 2.87 1.47 3.89 3.13 SVHN, 15.48 9.59 CIFAR-10 using 1000 training it reduces 22.11 18.40 CINIC-10 when 700 per class. code can be found following GitHub repository: https://github.com/ms-iraji/ICBSGAN ↗.

Язык: Английский

Fully automated coronary artery calcium score and risk categorization from chest CT using deep learning and multiorgan segmentation: A validation study from National Lung Screening Trial (NLST) DOI Creative Commons
Sudhir Rathore,

Ashish Gautam,

Prashant Raghav

и другие.

IJC Heart & Vasculature, Год журнала: 2025, Номер 56, С. 101593 - 101593

Опубликована: Янв. 5, 2025

Язык: Английский

Процитировано

1

A Review on Medical Image Segmentation: Datasets, Technical Models, Challenges and Solutions DOI Open Access
Hong‐Seng Gan, Muhammad Hanif Ramlee, Zimu Wang

и другие.

Wiley Interdisciplinary Reviews Data Mining and Knowledge Discovery, Год журнала: 2025, Номер 15(1)

Опубликована: Янв. 20, 2025

ABSTRACT Medical image segmentation is prerequisite in computer‐aided diagnosis. As the field experiences tremendous paradigm changes since introduction of foundation models, technicality deep medical model no longer a privilege limited to computer science researchers. A comprehensive educational resource suitable for researchers broad, different backgrounds such as biomedical and medicine, needed. This review strategically covers evolving trends that happens fundamental components emerging multimodal datasets, updates on learning libraries, classical‐to‐contemporary development models latest challenges with focus enhancing interpretability generalizability model. Last, conclusion section highlights future worth further attention investigations.

Язык: Английский

Процитировано

1

Contrast-enhanced magnetic resonance image segmentation based on improved U-Net and Inception-ResNet in the diagnosis of spinal metastases DOI Creative Commons
Hai Wang,

Shaohua Xu,

Kaibin Fang

и другие.

Journal of bone oncology, Год журнала: 2023, Номер 42, С. 100498 - 100498

Опубликована: Авг. 17, 2023

The objective of this study was to investigate the use contrast-enhanced magnetic resonance imaging (CE-MRI) combined with radiomics and deep learning technology for identification spinal metastases primary malignant bone tumor.The region growing algorithm utilized segment lesions, two parameters were defined based on interest (ROI). Deep algorithms employed: improved U-Net, which CE-MRI parameter maps as input, used 10 layers CE images input. Inception-ResNet model extract relevant features disease construct a diagnosis classifier.The diagnostic accuracy 0.74, while average U-Net 0.98, respectively. PA our is high 98.001%. findings indicate that have potential assist in differential tumor.CE-MRI can potentially tumor, providing promising approach clinical diagnosis.

Язык: Английский

Процитировано

12

Dual consistency regularization with subjective logic for semi-supervised medical image segmentation DOI
Shanfu Lu, Ziye Yan, Wei Chen

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 170, С. 107991 - 107991

Опубликована: Янв. 15, 2024

Язык: Английский

Процитировано

5

Shape-intensity-guided U-net for medical image segmentation DOI
Wenhui Dong, Bo Du, Yongchao Xu

и другие.

Neurocomputing, Год журнала: 2024, Номер 610, С. 128534 - 128534

Опубликована: Сен. 3, 2024

Язык: Английский

Процитировано

5

INSTRAS: INfrared Spectroscopic imaging-based TRAnsformers for medical image Segmentation DOI Creative Commons
Hangzheng Lin, Kianoush Falahkheirkhah, Volodymyr Kindratenko

и другие.

Machine Learning with Applications, Год журнала: 2024, Номер 16, С. 100549 - 100549

Опубликована: Апрель 5, 2024

Infrared (IR) spectroscopic imaging is of potentially wide use in medical applications due to its ability capture both chemical and spatial information. This complexity the data necessitates using machine intelligence as well presents an opportunity harness a high-dimensionality set that offers far more information than today's manually-interpreted images. While convolutional neural networks (CNNs), including well-known U-Net model, have demonstrated impressive performance image segmentation, inherent locality convolution limits effectiveness these models for encoding IR data, resulting suboptimal performance. In this work, we propose INfrared Spectroscopic imaging-based TRAnsformers Segmentation (INSTRAS). novel model leverages strength transformer encoders segment breast images effectively. Incorporating skip-connection encoders, INSTRAS overcomes issue pure models, such difficulty capturing long-range dependencies. To evaluate our existing conducted training on various encoder-decoder dataset INSTRAS, utilizing 9 spectral bands achieved remarkable

Язык: Английский

Процитировано

4

Dynamic graph consistency and self-contrast learning for semi-supervised medical image segmentation DOI
Gang Li, Jinjie Xie, Ling Zhang

и другие.

Neural Networks, Год журнала: 2024, Номер 184, С. 107063 - 107063

Опубликована: Дек. 15, 2024

Язык: Английский

Процитировано

3

Optimizing semi-supervised medical image segmentation with imbalanced filtering and nnU-Net enhancement DOI
Y. Y. Duan, Peng Wang, Yan Huang

и другие.

The Visual Computer, Год журнала: 2025, Номер unknown

Опубликована: Фев. 13, 2025

Язык: Английский

Процитировано

0

A Semi-Supervised Semantic Segmentation Method Based on a Dual-Student Single-Teacher Network for Skin Lesions DOI

金典 卢

Modeling and Simulation, Год журнала: 2025, Номер 14(05), С. 558 - 568

Опубликована: Янв. 1, 2025

Язык: Английский

Процитировано

0

Semi-supervised intracranial aneurysm segmentation via reliable weight selection DOI
Cao Wei, Xin Chen, Jianping Lv

и другие.

The Visual Computer, Год журнала: 2024, Номер unknown

Опубликована: Дек. 4, 2024

Язык: Английский

Процитировано

3