Medical Relationship Classification Method Based on Dual Channel Attention DOI
Ziqi Zhang, Xiangwei Zheng, Jinsong Zhang

и другие.

Опубликована: Ноя. 24, 2023

Electronic medical record mining based on relationship classification has become a hot topic in the field of healthcare. However, existing models classification, most them use single-layer attention, it results relatively simple feature representation and is easy to lose information during training. Therefore, this paper proposes method dual channel attention. Firstly, 1 combines BERT(Bidirectional Encoder Representation from Transformers), GRU(Gate Recurrent Unit) Global Attention, while 2 Subject_object_mask_generation So Attention. Specifically, we module specify corresponding positions subject object within text. And Attention used focus attention between object. Secondly, outputs two channels are concatenated. Finally, perform concatenated results. We evaluated public dataset CMeIE(Chinese Medical Information Extraction), experimental showed that improved model's accuracy, recall F1 values increased by 2.2%, 0.03% 1.3% respectively, compared baseline. It indicates our certain advantages other methods.

Язык: Английский

A Swin transformer encoder-based StyleGAN for unbalanced endoscopic image enhancement DOI

Bo Deng,

Xiangwei Zheng,

Xuanchi Chen

и другие.

Computers in Biology and Medicine, Год журнала: 2024, Номер 175, С. 108472 - 108472

Опубликована: Апрель 16, 2024

Язык: Английский

Процитировано

1

Graph Convolutional Neural Network Based Emotion Recognition with Brain Functional Connectivity Network DOI Creative Commons

Pengzhi Gao,

Xiangwei Zheng, Tao Wang

и другие.

International Journal of Crowd Science, Год журнала: 2024, Номер 8(4), С. 195 - 204

Опубликована: Сен. 1, 2024

Язык: Английский

Процитировано

1

Online Learning Behavior Analysis and Achievement Prediction with Explainable Machine Learning DOI

Haowei Peng,

Xiaomei Yu,

Xiaotong Jiao

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 22 - 37

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

Using Micro Videos to Optimize Premiere Software Course Teaching DOI

Lixiang Zhao,

Xiaomei Yu,

Wenxiang Fu

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 92 - 105

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

An Improved Prototypical Network for Endoscopic Grading of Intestinal Metaplasia DOI
Rui Li,

Xiaomei Yu,

Xuanchi Chen

и другие.

Lecture notes in computer science, Год журнала: 2024, Номер unknown, С. 122 - 133

Опубликована: Янв. 1, 2024

Язык: Английский

Процитировано

0

GNN-MgrPool: Enhanced Graph Neural Networks with Multi-granularity Pooling for Graph Classification DOI
Haichao Sun, Guoyin Wang, Qun Liu

и другие.

Information Sciences, Год журнала: 2024, Номер 680, С. 120965 - 120965

Опубликована: Июнь 26, 2024

Язык: Английский

Процитировано

0

Personalized Learning Resource Recommendation using Differential Evolution-Based Graph Neural Network: A GraphSAGE Approach DOI
Tianze Sun,

Jie Wen,

Jiale Gong

и другие.

Опубликована: Авг. 18, 2023

This paper proposes a novel personalized recommendation algorithm for learning resources based on differential evolution(DE) and graph neural networks(GNN). By representing learners as data incorporating multi-head attention mechanism, we have developed an effective method recommendation. The evolution is utilized to optimize model hyperparameters, resulting in improved performance. We conducted experiments widely used resource dataset, comparing our with several classical algorithms. results demonstrate significant advantages of approach terms accuracy, recall, $\Gamma 1$ score, RMSE value.

Язык: Английский

Процитировано

1

RTFNN: A refined time–frequency neural network for interpretable intelligent diagnosis of aero-engine DOI
Jiakai Ding, Yi Wang, Yi Qin

и другие.

Advanced Engineering Informatics, Год журнала: 2024, Номер 64, С. 103048 - 103048

Опубликована: Дек. 18, 2024

Язык: Английский

Процитировано

0

Spatial-Temporal Fusion Pseudo-Labeling Based Informative Frame Classification for Confocal Laser Endomicroscopy Video DOI
Zhaohui Wang, Xiangwei Zheng, Dejian Su

и другие.

2021 IEEE International Conference on Bioinformatics and Biomedicine (BIBM), Год журнала: 2023, Номер 3, С. 2269 - 2272

Опубликована: Дек. 5, 2023

Confocal Laser Endomicroscopy (CLE) has shown great advantages in the diagnosis of gastrointestinal diseases. To solve problems time-consuming manual classification CLE video information frames and insufficient labeled data, we proposed a Spatial-Temporal Fusion Pseudo-Labeling method (STFPL) based on semi-supervised learning. Firstly, networks trained with limited data are used to generate predictions unlabeled images selected videos. Secondly, videos fused obtain pseudo-labels. Thirdly, loss formed by pseudo-labels combined update networks. Finally, experimental results demonstrated that STFPL outperforms other algorithms dataset. In addition, can achieve effectiveness supervised dataset for evaluating quality intestinal cleaning, Nerthus

Язык: Английский

Процитировано

0

The Educational Applications of Knowledge Graph in Python Courses DOI
Qiang Yin, Xiaomei Yu,

Zhaokun Gong

и другие.

Опубликована: Ноя. 24, 2023

With the development of educational informatization and continuous progress artificial intelligence technology, course knowledge graphs have gradually become a research hotspot in field education. The teaching process Python courses faces following problems: there are many points difficulties courses, singular form presentation, content that cannot meet diverse learning needs students. In response to these issues, this paper proposes application teaching. After one semester practical implementation, students' efficiency performance showed significant improvement.

Язык: Английский

Процитировано

0