Diagnosis of incipient faults in wind turbine bearings based on ICEEMDAN–IMCKD DOI Creative Commons
Yanjun Li, DJ Han

International journal of mechanical system dynamics, Год журнала: 2024, Номер unknown

Опубликована: Ноя. 5, 2024

Abstract To address the difficulty in extracting early fault feature signals of rolling bearings, this paper proposes a novel weak diagnosis method for bearings. This combines Improved Complementary Ensemble Empirical Mode Decomposition with Adaptive Noise (ICEEMDAN) and Maximum Correlated Kurtosis Deconvolution (IMCKD). Utilizing kurtosis criterion, intrinsic mode functions obtained through ICEEMDAN are reconstructed denoised using IMCKD, which significantly reduces noise measured signal. approach maximizes energy amplitude at characteristic frequency, facilitating identification. Experimental studies on two test benches demonstrate that effectively interference highlights frequency components. Compared traditional methods, it improves signal‐to‐noise ratio more accurately identifies features, meeting requirements discriminating bearing faults. The proposed study was applied to vibration gearbox bearings new high‐speed wire department Long Products Mill. It successfully extracted information faults, achieving expected diagnostic results. further validates effectiveness ICEEMDAN–IMCKD practical engineering applications, demonstrating significant value detecting impact characteristics

Язык: Английский

Fountain-inspired triboelectric nanogenerator as rotary energy harvester and self-powered intelligent sensor DOI
Gefan Yin,

Xuexiu Liang,

Ying Zhang

и другие.

Nano Energy, Год журнала: 2025, Номер unknown, С. 110779 - 110779

Опубликована: Фев. 1, 2025

Язык: Английский

Процитировано

1

Memory-Augmented Prototypical Meta-Learning Method for Bearing Fault Identification under Few-Sample Conditions DOI
Xianze Li,

Zhitai Xing,

Ling Xiang

и другие.

Neurocomputing, Год журнала: 2025, Номер unknown, С. 129996 - 129996

Опубликована: Март 1, 2025

Язык: Английский

Процитировано

1

A Three-Channel Feature Fusion Approach Using Symmetric ResNet-BiLSTM Model for Bearing Fault Diagnosis DOI Open Access
Yingyong Zou, Tao Liu,

Xingkui Zhang

и другие.

Symmetry, Год журнала: 2025, Номер 17(3), С. 427 - 427

Опубликована: Март 12, 2025

For mechanical equipment to operate normally, rolling bearings—which are crucial parts of rotating machinery—need have their faults diagnosed. This work introduces a bearing defect diagnosis technique that incorporates three-channel feature fusion and is based on enhanced Residual Networks Bidirectional long- short-term memory networks (ResNet-BiLSTM) model. The can effectively establish spatial-temporal relationships better capture complex features in data by combining the powerful spatial extraction capability ResNet bidirectional temporal modeling BiLSTM. Specifically, one-dimensional vibration signals first transformed into two-dimensional images using Continuous Wavelet Transform (CWT) Markov Transition Field (MTF). upgraded ResNet-BiLSTM network then used extract combine original signal along with from two types images. Finally, experimental validation performed datasets. results show compared other state-of-the-art models, computing cost greatly reduced, params flops at 15.4 MB 715.24 MB, respectively, running time single batch becomes 5.19 s. fault accuracy reaches 99.53% 99.28% for datasets, successfully realizing classification task.

Язык: Английский

Процитировано

1

Privacy-preserving intelligent fault diagnostics for wind turbine clusters using federated stacked capsule autoencoder DOI
Hao Chen, Xianbo Wang, Zhi-Xin Yang

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 254, С. 124256 - 124256

Опубликована: Май 28, 2024

Язык: Английский

Процитировано

4

Novel shape control system of hot-rolled strip based on machine learning fused mechanism model DOI

LingMing Meng,

Jingguo Ding, Xiaojian Li

и другие.

Expert Systems with Applications, Год журнала: 2024, Номер 255, С. 124789 - 124789

Опубликована: Июль 14, 2024

Язык: Английский

Процитировано

4

A comprehensive approach with DTW-driven IMF selection, multi-domain fusion, and TSA-based feature selection for compound fault diagnosis DOI
A. Andrews,

Manisekar Kondal

Measurement, Год журнала: 2024, Номер 242, С. 115974 - 115974

Опубликована: Окт. 12, 2024

Язык: Английский

Процитировано

4

Advanced fault diagnostics in rotating machinery: A deep learning approach using octave theory of dynamic vibration signals DOI
Dawei Zhang, Shuai Shao, Xuan Zhao

и другие.

Journal of Vibration and Control, Год журнала: 2025, Номер unknown

Опубликована: Янв. 21, 2025

In engineering practice, the diagnosis of rotating machinery faults often faces numerous challenges, including noise interference and changes in operating conditions, which pose new difficulties for deep learning methods lacking prior knowledge. response to this issue, paper proposes a fault method (OCML) based on octave, convolutional neural networks, MOGRIFIER LSTM. This can simply effectively achieve reduction, feature extraction, classification. Firstly, through octave analysis, redundant information be conveniently filtered out, enhancing signal representation. Secondly, designed CNN-MOGRIFIER LSTM model capture local features temporal dependencies data has good interaction capabilities. Experiments CWRU dataset permanent magnet synchronous motor demonstrate that proposed exhibits diagnostic performance across different scenarios conditions. Furthermore, compared other methods, OCML performs better terms accuracy stability. These results collectively confirm generalization method.

Язык: Английский

Процитировано

0

A novel adaptive gating neurons model with physical features weighted for bearing fault diagnosis under strong noise DOI
Panpan Guo, Weiguo Huang, Ning Jia

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 149, С. 110532 - 110532

Опубликована: Март 14, 2025

Язык: Английский

Процитировано

0

Optimizing machine learning algorithms for fault classification in rolling bearings: A Bayesian Optimization approach DOI
Muhammad Zain Yousaf,

Josep M. Guerrero,

Muhammad Tariq Sadiq

и другие.

Engineering Applications of Artificial Intelligence, Год журнала: 2025, Номер 150, С. 110597 - 110597

Опубликована: Март 23, 2025

Язык: Английский

Процитировано

0

A new gear weak feature extraction method based on modified symplectic geometry mode decomposition DOI
Yanli Ma, Wenlong Liu, Yu Zhang

и другие.

Digital Signal Processing, Год журнала: 2025, Номер unknown, С. 105284 - 105284

Опубликована: Апрель 1, 2025

Язык: Английский

Процитировано

0